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EXECUTIVE SUMMARY 
 
 
 

INTRODUCTION 
 
The Naval Center for Cost Analysis (NCCA) organized an in-house software team of six 
analysts to assess NCCA’s software cost estimating process.  The team discovered that NCCA 
did not have a well defined and consistent process for estimating software cost.  NCCA was 
using Software Architecture Sizing & Estimating Tool (SASET) and Revised Intermediate 
Constructive Cost Model (REVIC) to perform estimates, but in-house guidance on the correct 
procedure to develop a software estimate did not exist.  After several discussions regarding the 
lack of consistency in how NCCA used these models, the team conducted a survey to 
determine if other governmental agencies and contractors were experiencing the same 
problems.  The survey was disseminated to a total of 25 governmental agencies and 
contractors.  The survey responses indicated that other organizations were experiencing similar 
problems, so NCCA decided to conduct an extensive research effort to improve in-house (and 
hopefully other organizations’) software cost estimating capabilities.  
 
OBJECTIVE and SCOPE 
 
The NCCA software team’s mission was: 
 
“To provide the individual analyst with the procedures, tools, and training to develop a 
defensible and reproducible software life cycle cost estimate.” 
 
NCCA developed goals to ensure that the mission was adhered to and accomplished.  There 
were two phases to this software research effort.  Phase One was the baseline software 
development cost research effort.  It is this effort which is documented in this handbook.  The 
Phase One goals were to provide:  1) a centralized and well documented database comprised 
of existing software databases, 2) formal procedures and guidelines for developing a software 
estimate, 3) top-level software estimating tools, and 4) training.  Although the mission of the 
software team was to address the software life cycle, the maintenance phase was not 
addressed in Phase One.  The goals for Phase Two are to collect and summarize all the 
documentation on existing commercial software cost models and to focus on data collection 
efforts, especially in the Automated or Management Information System (AIS/MIS) domain.  

 
METHODOLOGY and RESULTS 
 
NCCA developed a five-step software development estimating process as detailed in Figure 1.   
The handbook is organized according to this process.   
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DEFINE THE PROBLEM

DEVELOP EFFORT
ESTIMATE (MAN-MONTHS)

  PERFORM EQUIVALENT
CODE CONVERSION

DEVELOP SCHEDULE
ESTIMATE (MONTHS)

        PERFORM EFFORT-to-COST ($)
CONVERSION

PERFORM
RISK  ANALYSIS  

Figure 1:  Software Development Estimating Process 

 
The key findings and results (i.e., tools) associated with each step are summarized 
below.  NCCA contends that the analytical approach used to develop the standard tools 
(vice the tools themselves) is the most important aspect of this effort.  Therefore, NCCA 
strongly recommends that the standard tools not be utilized before the analyst has 
completely read and understood:  1) the approach utilized to develop the tools and 2) the 
tools’ strengths and weaknesses.  This document includes a significant amount of detail 
regarding the team’s data normalization and analysis process that should facilitate this 
understanding. 
 
 
Step 1:  Defining the Problem 
 
NCCA developed a standard form, “NCCA Software Program Definition Form”, and an 
associated data field dictionary, which can be utilized to obtain information on the program 
being estimated.  Since the Phase One analysis is geared toward the novice software cost 
estimator, most of the form targets objective metrics predicated on the results of the analytical 
efforts documented herein.  Additionally, NCCA developed the form, “NCCA Historical Software 
Data Request Form”, and an associated data field dictionary, to aid in the collection of historical 
data.  Finally, NCCA developed the “NCCA Historical Software Data Request Form’s Mapping 
Procedures” form, which documents the mapping procedures that should be utilized when 
entering newly obtained historical data into the NCCA Raw Software Effort Database (discussed 
in Section 3 - Software Database).  
 
 
Step 2:  Effort Estimation/ESLOC Conversion 
 
NCCA Raw Software Effort Database: 
 
Prior to beginning the analytical efforts, NCCA developed a software database.  For Phase One, 
the NCCA Raw Software Effort Database drew upon data currently available to NCCA.  The 
NCCA Raw Software Effort Database consists of 457 unique records or data points; 151 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP 5 
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program-level and 306 Computer Software Configuration Item (CSCI)-level1 compiled from eight 
different databases: 
 
1) MITRE Non-Ada Database 
2) MITRE Ada Database 
3) Space and Missile Center (SMC) Database 
4) NASA Software Engineering Laboratory (SEL) Database 
5) Navy (NCCA) Internal Database 
6) SASET Validation Database 
7) REVIC Recalibration Database 
8) IIT Research Institute (IITRI) Database 
 
The database contains 73 attribute fields, however, all fields are not completed for each record.  
These fields describe various attributes of the program including size, effort, schedule, 
language, and development process.  At a minimum, size and effort are provided for each of the 
457 data points.  The programs were developed from the early 1970s through the 1990s. 
 
NCCA Normalized Software Effort Database: 
 
The NCCA Raw Software Effort Database does not support meaningful analyses.  Many of the 
records in the database have different units of measure for items such as size, effort and 
schedule.  NCCA contends that there are two possible approaches to arrive at a normalized 
database.  The first approach is to filter out any data point that does not meet specified criteria 
(e.g., exclude all data points which do not include the software requirements phase).  A second 
approach is to keep all of the data points, but adjust them as necessary in order to obtain 
consistent units of measure (e.g., adjust all data points which don’t include the requirements 
phase).  The latter approach can be extremely subjective; adjustments can vary tremendously 
depending upon the methodology chosen (engineering judgment versus historical data).  
Therefore, in order to minimize the amount of uncertainty introduced into the data, NCCA chose 
to normalize the database by filtering out those data points which did not satisfy the specified 
criteria (i.e., no factors were used to normalize data points).   
 
To properly normalize the database, NCCA attempted to isolate those objective software 
metrics which significantly drive productivity by stratifying the data and conducting statistical 
non-parametric tests.  The following software metrics were proven to be statistically significant 
when estimating software productivity:   
 
1) Mission (Domain) – MIS versus Weapon System 
2) Counting Convention - Physical versus Logical 
3) Language - Assembly versus High Order Language (HOL (e.g., FORTRAN, Jovial))  
4) Phasing - Software Specification Review (SSR) through Formal Qualification Test (FQT) 

versus System Design Review (SDR) through FQT 
5) Code Condition – percent (%) new, % reused (e.g., modified, verbatim, translated, rehosted, 

etc.) 
6) Development Mode - Embedded versus Non-Embedded 
 

                                                 
1 There were a total of 329 CSCI-level data points; 306 CSCI-level data points plus 23 program-level data points.  These 23 
program-level data points contained only one CSCI. 
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Based on these findings, the NCCA Normalized Software Effort Database included only those 
data points that met the following criteria:  
 
1) Mission or Domain was weapon system 
2) Counting Convention was logical 
3) Development language was HOL 
4) Development phases span SDR through FQT 
5) Code condition was known 
6) Development mode was known 
7) Effort in hours or hours per man-month were known (and normalized to 152 hours per man-

month). 
 
As depicted in Table 1 below, the normalization procedure eliminated most of the data points 
included in the raw database.  
 

 Initial Number of Data 
Points  

 Program CSCI 
Start:  Top-Level 151 3292 
î   
Normalizing Factors Number of Data Points 

Remaining 
 Program CSCI 
Mission = Weapon System 105 236 
î   
Code Count = Logical 56 185 
î   
HOL ≥ 70% 47 146 
î   
Scope of Effort = SDR through FQT 32 100 
î   
Code Condition Known 31 97 
î   
Development Mode Known  31 97 
î   
Hours/man-month = known 31 97 
Final NCCA Normalized Software Effort Database 31 973 
Table 1:  Evolution of the NCCA Normalized Software Effort Database 

 
The final program-level NCCA Normalized Software Effort Database consists of 31 data points.   
The start dates were not provided for all data points.  However, the start dates provided were 
from 1972 through 1984.  These software developments were written in FORTRAN, Ada, and 
JOVIAL.  The SLOC range is from 9 to 1,113 KSLOC.  The total effort ranged from 9 to 10,976 
man-months.  A majority of the program-level data points are semi-detached, while some 
embedded and organic modes are represented.  This database includes various missions, such 
as:  radar, command, control and communications (C3), and simulation, which were installed on 
both ground and ship platforms. 
 
The final CSCI-level NCCA Normalized Software Effort Database consists of 97 data points. 
Similar to the program-level database, the start dates were not provided for all data points.  
However, the CSCI start dates provided were from 1972 through 1991.  These software 
developments were written in FORTRAN, Ada, CMS-2, JOVIAL, ATLAS and C.  The SLOC 
range is from 0.411 to 492 KSLOC.  The total effort ranged from 2.1 to 5,007 man-months.  A 

                                                 
2Three hundred and six CSCI-level data points plus 23 program-level data points that contained only one CSCI.  
3Ninety-three CSCI-level data points plus four program-level data points that contained only one CSCI. 
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majority of the CSCI-level data points are embedded, while some semi-detached and organic 
modes are represented.  This database includes various missions, such as:  radar, Anti-
Submarine Warfare (ASW), C3, simulation and missile, which were installed on ground, air and 
ship platforms. 
 
Table 2 shows which source databases remained after normalization and why the other data 
sources were deleted. 
 

  Number of Data Points  
Source Database Code Program CSCI Reason for Database Exclusion 

MITRE Non-Ada 1 13 38  
MITRE Ada 2 0 0 Effort did not reflect SDR through FQT 
SMC 3 4 6  
NASA SEL 4 14 4  
Navy Internal 5 0 45 Program-level data points utilized physical SLOC counting convention 
Silver SASET 6 0 0 Code count, hours/man-month, and scope of effort unknown 
REVIC Recalibration 7 0 0 Hours/man-month for data points from non-SMC sources could not be verified 
IITRI 8 0 4 Did not contain program-level data 
TOTAL  31 97  

Table 2:  NCCA Normalized Software Effort Database and Source Databases 
 
Analysis: 
 
NCCA’s recommended approach to estimating software development effort is to use contractor-
specific data.  However, since the majority of the data in the NCCA Normalized Software Effort 
Database was previously sanitized (non-program or non-contractor-specific) by the source 
database developer, NCCA developed standard normalized estimating relationships.  The 
normalized estimating relationships estimate effort in man-months (MM) as a function of size.  In 
this handbook, the size metric used is equivalent new source lines of code (ESLOC).  ESLOC 
are the weighted sum of new code and reused code.  It is generally accepted that adapted 
SLOC do not require the full software development effort (design, code, test and 
documentation).  The ESLOC conversion is typically based on engineering judgment, however, 
NCCA developed a unique quantitative approach to ESLOC calculation.  The normalized 
estimating relationships (which also perform ESLOC calculations) should be utilized if and only 
if the program being estimated meets the normalization criteria set forth previously and 
contractor-specific data does not exist. 
 
In the event the program being estimated does not meet the normalization criteria, NCCA 
developed non-normalized top-level productivity factors from the NCCA Raw Software Effort 
Database.  While the variances associated with the normalized standard regressions are large, 
those associated with the non-normalized productivity top-level standard factors are even larger.  
NCCA believes that the magnitude of these variances can be largely attributed to the fact that 
the standard regressions and factors reflect industry averages.  NCCA believes developing 
contractor-specific tools can reduce these variances.   
 
NCCA then analyzed and compared the resulting statistics and associated performance 
parameters of the regressions developed.  Based on this analysis, the recommended software 
effort estimating methodology developed, and documented within this handbook, should be 
applied as follows. 
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If the program being estimated satisfies all of the following criteria: 
 
1) Mission or Domain is weapon system 
2) Counting Convention is logical 
3) Development language is HOL 
4) Development phases span SDR through FQT 
5) Code condition is known 
6) Development mode is known 
7) Effort in hours or hours per man-month is known 
 
then, the NCCA Normalized Regressions should be utilized as follows: 
 

• If the program being estimated is 100 percent new, apply the following equation at the 
program-level: 

Effort (MM) = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)]  
R2 = 0.96; Std Error = 0.42; Predict (20)4 = 58%; n = 31; Range = 9 - 1,113 EKSLOC 

where the dummy variable, D1, equals one if the program is embedded and zero otherwise. 
 

• If the program being estimated is equal to or greater than 82 percent reused code, apply the 
following equation at the program-level: 

 
  Effort (MM) = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)]  

R2 = 0.96; Std Error = 0.42; Predict (20) = 58%; n = 31; Range = 9 - 1,113 EKSLOC 
where the dummy variable, D1, equals one if the program is embedded and zero otherwise. 

 

• If the program being estimated has less than 82 percent reused code which is evenly 
distributed between modified and verbatim code, apply the following equation at the 
program-level: 

 
  Effort (MM) = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)]  

R2 = 0.96; Std Error = 0.42; Predict (20) = 58%; n = 31; Range = 9 - 1,113 EKSLOC 
where the dummy variable, D1, equals one if the program is embedded and zero otherwise. 

 

• If the program being estimated has less than 82 percent reused code which is 
predominantly verbatim, apply the following equation at the CSCI-level: 

 
  Effort (MM) = 0.023 *[New SLOC + (0.03 * Reused SLOC)][0.8609 + (0.0529 * D1)]  

R2 = 0.77; Std Error = 0.67; Predict (20) = 26%; n = 97; Range = 0.4 - 253.4 EKSLOC  
where the dummy variable, D1, equals one if the program is embedded and zero otherwise. 

 
 
If the program being estimated does not satisfy NCCA’s normalization criteria, then the NCCA 
Standard Non-Normalized Productivity Factors should be utilized as follows: 
 

                                                 
4 Predict (20) is the percentage of time the total residuals are within 20 percent of the actual value.  See Appendix C for more details 
on Predict (20) calculations. 
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• If the program is MIS and 
1) Code condition is unknown = 0.6913 Hrs/Total SLOC 

Coefficient of Variation (CV) = 86%; CVest = 132%; n = 17 
2) Code condition is known = 0.8240 Hrs/ESLOC 

Efactor = 0; CV = 72%; CVest = 103%; n = 17 

• If the program is written entirely in Assembly and 
1) Code condition is unknown = 2.6504 Hrs/Total SLOC 

CV = 120%; CVest = 177%; n = 68 
2) Code condition is known = 3.0093 Hrs/ESLOC 

Efactor = 0.6; CV = 115%; CVest = 168%; n = 61 
 

• If the program is written significantly (>30%) in Assembly and 
1) Code condition is unknown = 3.7383 Hrs/Total SLOC 

CV = 100%; CVest = 132%; n = 40 
 

2) Code condition is known = 3.9904 Hrs/ESLOC 
Efactor = 0.69; CV = 98%; CVest = 125%; n = 38 

 

• If the counting convention is physical and 
1) Code condition is unknown = 0.6357 Hrs/Total SLOC 

CV = 124%; CVest = 93%; n = 18 
 

2) Code condition is known = 0.7350 Hrs/ESLOC 
Efactor = 0; CV = 104%; CVest = 123%; n = 18 

 

• If the counting convention is unknown and 
1) Code condition is unknown = 1.3238 Hrs/Total SLOC 

CV = 128%; CVest = 196%; n = 273 
 

2) Code condition is known = 1.6763 Hrs/ESLOC 
Efactor = 0.12; CV = 107%; CVest = 215%; n = 262 

 

• If the counting convention is logical, but phasing is unknown and 
1) Code condition is unknown = 1.3360 Hrs/Total SLOC 

CV = 113%; CVest = 182%; n = 186 
  

2) Code condition is known = 1.8597 Hrs/ESLOC 
Efactor = 0.04; CV = 83%; CVest = 161%; n = 185 

 
NCCA used a validation data set to demonstrate and compare the performance of the 
regressions and productivity factors; the regressions greatly outperform the productivity 
factors, therefore, NCCA strongly encourages the analyst to define the program being 
estimated according to the normalization criteria identified previously.  For example, if you 
have a choice of counting conventions, choose logical so that the normalized regressions, vice 
the non-normalized productivity factors, can be used.   
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Step 3:  Schedule Estimation 
  
NCCA Raw Schedule Database: 
 
NCCA performed a query of the NCCA Raw Software Effort Database to obtain data points that 
included schedule as well as effort.  The query resulted in a total of 151 program-level data 
points.  These 151 data points were screened to identify those having schedule dates from SDR  
through FQT.  Thirty-seven of the 151 points met this criterion and were retained.  These data 
points constitute the NCCA Raw Schedule Database. 
 
NCCA Normalized Schedule Database: 
 
The 37 data points in the NCCA Raw Schedule Database were then screened further to obtain 
the NCCA Normalized Schedule Database.  The additional criteria for the NCCA Normalized 
Schedule Database were:  
 
1) Effort reflects SDR through FQT 
2) Effort in hours or hours per man-month were known (and converted to 152 hours per man-

month). 
 
The resulting 16 data points are a mixture of HOL and Assembly language programs.  However, 
none of the HOL programs were written in Ada.  The mission types are characterized as C3, 
radar, and simulation programs that are installed on air, ship, and ground platforms.  The total 
SLOC ranges from 20 to 1,113 KSLOC, and total development effort ranges from 157 to 10,976 
man-months.  The associated schedules range from 12 to 74 months.  The mean schedule is 
33.3 months. 
 
Analysis: 
 
Similar to the effort analysis, NCCA created normalized top-level factors and schedule 
estimating relationships where schedule is a function of effort in man-months or size in ESLOC.   
The final recommended tool, applicable to weapon system programs with development phases 
spanning from SDR through FQT, is: 
 

Schedule (Months) = 5.12 (MM)0.2266 * e (0.3574 * D1)  
R2 = 0.64; Std Error = 0.31;  Predict (20) = 44%;  n = 16; Range = 157 – 10,976 MM 

where the dummy variable, D1, equals one if the program is 100 percent new and zero otherwise. 
 
 
Step 4:  Effort-to-Cost Conversion 
 
NCCA Raw Labor Rate Database: 
 
NCCA collected software cost and manning data from 34 weapon system programs.  The data 
was collected from both cost performance reports (CPRs) and contractor cost data reports 
(CCDRs).  The raw software cost data is in then-year dollars and includes general and 
administrative cost (G&A).  The manning data is expressed in man-hours or man-months. 
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NCCA Normalized Labor Rate Database: 
 
After scrutiny of the data points, some programs were excluded from the database for one of the 
following reasons: 
 
1) Man-hours were not reported. 
2) Development phases didn’t reflect SDR-FQT. 
3) Major software development problems occurred (i.e., flight test failures) which implied that 

these points were outliers. 
4) Programs were less than 90 percent complete. 
 
The resulting NCCA Normalized Labor Rate Database has 15 programs.  The man-hours 
expended to develop the software range from 2K to 793K and the software costs through G&A 
range from $317K to $95M in FY97$.  The NCCA Normalized Labor Rate Database consists of 
aircraft, ships, missiles and electronics programs, representing both cost-plus and fixed-price 
contracts and East and West Coast contractors.  The first year of development ranged from 
1982 to 1992.  NCCA did not collect data for MIS programs. 
 
Analysis: 
 
NCCA developed top-level factors for the different populations, in order to conduct non-
parametric tests.  Based on the non-parametric tests, NCCA determined that platform type (i.e., 
aircraft versus non-aircraft) was a statistically significant independent variable.  Hence, NCCA 
developed two types of regressions:  with and without dummy variables.  NCCA then analyzed 
and compared the resulting statistics and associated performance parameters of the factors and 
regressions developed.  Based on the analysis, NCCA recommends the following regression be 
used to convert effort to cost if contractor-specific data is not available:   
 

Cost through G&A 
 

FY97$K = 136.93 * (Labor KHrs)0.98 * e(- 0.40 * D1) 
R2 = 0.99; Std Error = 0.13; Predict (20) = 87%; n = 15; Range 2 - 793 Labor KHrs 

where the dummy variable, D1, equals one if the program is non-aircraft and zero otherwise. 
 
NCCA also developed a regression for a fully burdened estimate.  The price data points utilized 
in the regression were estimated by applying average Cost of Money (COM) and fee rates to 
the cost through G&A data points in the NCCA Normalized Labor Rate Database.  For those 
programs where fee was zero or not known, an average rate based on the available data points 
was used. 

 
Price 

 
FY97$K = 154.21 * (Labor KHrs)0.98 * e(- 0.39 * D1) 

R2 = 0.99; Std Error = 0.13; Predict (20) = 87%; n = 15; Range 2 - 793 Labor KHrs 
where the dummy variable, D1 ,equals one if the program is non-aircraft and zero otherwise. 
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Step 5:  Risk Analysis 
 
NCCA Raw Risk Analysis Database: 
 
NCCA performed a query of the SMC Software Database to obtain data points that included 
both actual and estimated SLOC.  The query produced 12 program-level and 28 CSCI-level 
data points.  Next, a search of NCCA’s files provided 10 additional program-level data points.  
Finally, one program-level and four CSCI-level data points were collected from an Institute for 
Defense Analyses (IDA) study for a total of 23 program-level and 32 CSCI-level data points. 
 
NCCA Normalized SLOC Growth Database: 
 
The NCCA Raw SLOC Growth Database was screened, as follows, to arrive at the normalized 
database: 
 
1) Based on the Mann Whitney U test and the Kolmogorov-Smirnov test, the CSCI-level data 

(32 data points) was deleted.  The tests showed that the means and variances of CSCI and 
program-level data points were not equal. 

 
2) Four program-level data points were eliminated because the initial SLOC estimates could 

not be verified. 
 
3) Three MIS programs were excluded in order to remain consistent with the effort analysis 

results. 
  
This screening resulted in 16 program-level data points.  Although NCCA is confident the 
software for these programs was developed between Milestones II and III, specific review dates 
are unknown.  The majority of the program names are also unknown.  The range of estimated 
SLOC values are 14 to 1,246 KSLOC; nine programs are less than 100 KSLOC.  Five programs 
are entirely new.  All were weapon system programs whose code condition, both new and 
reused, was known. 
 
Analysis: 
 
NCCA addressed two areas of risk in the software development estimating process.  First, 
NCCA addressed software development growth rates that reflect the difference between the 
estimated and the actual lines of code.  The purpose of this effort was to provide a risk 
assessment of the initial software lines of code estimate. 
 
Second, NCCA addressed software code condition risk.  Often, the initial sizing estimate reflects 
an overestimate of the amount of reused code.  NCCA developed a scheme for redistributing 
code estimates from reused to new. 
 
NCCA recommends that these two risk areas be applied as follows: 
 
1) To estimate SLOC growth risk, add 22 percent to the initial total SLOC sizing estimate. 
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2) To estimate code condition risk, add eight percentage points to the initial percent new 
estimate (if less than 93 percent) and subtract eight percentage points from the initial 
percent reused estimate. 

 
CONCLUSIONS 
 
NCCA accomplished the Phase One mission by providing NCCA analysts with a normalized 
database and associated top-level software development estimating tools, which are credible, 
reproducible, defensible and well documented.  This handbook will equip a cost analyst with the 
proper techniques for understanding, developing and utilizing objective software development 
estimating tools.  Unfortunately, though not surprisingly, the resulting effort, schedule and risk 
tools exhibit significant variability, as evidenced by the CVs which are typically higher than 30 
percent.  This variability is likely due to a variety of factors (e.g., different complexity levels or 
various development processes), but NCCA believes the variability can be largely attributed to 
the fact that the underlying databases reflect the capabilities of a mix of contractors.  We highly 
recommend that, whenever possible, the analyst strive to develop software estimates that are 
based on contractor-specific data.  For those software estimating tasks where historical, 
contractor-specific data is not available, the standard (i.e., industry average) tools presented in 
this handbook are appropriate.  For those estimating tasks where historical, contractor-specific 
data is available, the handbook should be used as a “how-to” guide to develop contractor-
specific tools. 
 
While the tools presented in this handbook have their documented limitations, NCCA 
views the handbook in a broader sense as a procedural and analytical framework for 
continual software database and methodology improvement. 
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INTRODUCTION 
 
 

1.1  HANDBOOK INTRODUCTION 
 
Although a multitude of software development estimating tools currently exist, software 
development is still one of the most difficult areas to estimate.  The Naval Center for Cost 
Analysis (NCCA) contends that only by targeting specific contractors and their associated 
development processes (including personnel, tools and methodologies) can cost estimators 
expect to decrease the large variances associated with software development estimates.  A 
detailed, contractor-specific database and associated contractor-specific software development 
estimating tools do not currently exist within the Navy.  This handbook is not intended to fill this 
void, but to provide the analyst with a set of standard instructions and tools to utilize when 
additional contractor-specific, analogous data is unavailable.  These tools will allow the analyst 
to develop a comprehensive, defensible and reproducible software development estimate, with 
the associated statistical variances defined.  Although this document is intended for novice 
software cost estimators, it is not tutorial in nature.  However, through close attention to the 
assumptions and analytical approaches underlying the standard software development 
estimating tool set, the analyst should acquire many of the skills necessary to develop or 
analyze other software development estimating approaches.  Additionally, the specific strengths 
and weaknesses of the recommended approaches, including examples and possible follow-on 
research efforts, are discussed to facilitate usage of, and modifications and improvements to, 
the standard tools. 
 
NCCA recommends a five-step software development cost estimating process, as illustrated in 
Figure 1-1: 
 
 
 

DEFINE THE PROBLEM

DEVELOP EFFORT
ESTIMATE (MAN-MONTHS)

  PERFORM EQUIVALENT
CODE CONVERSION

DEVELOP SCHEDULE
ESTIMATE (MONTHS)

        PERFORM EFFORT-to-COST ($)
CONVERSION

PERFORM
RISK  ANALYSIS  

Figure 1-1:  Software Development Estimating Process
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For each major step of the process, this document discusses:  1) the underlying database, 2) 
the normalization efforts performed, 3) the standard regressions or factors developed, (with their 
associated strengths and weaknesses), and 4) the final recommended methodology, including 
detailed instructions which address when and how to apply the tools.  Proper use of these tools 
requires the analyst to understand the weaknesses in the underlying database in order to 
quantify, rectify, or at a minimum, qualify the impacts of these weaknesses for the program 
being estimated.  As mentioned earlier, these standard tools are to be used only when 
additional, contractor-specific, analogous data is unavailable.  This document discusses, in 
detail, why contractor-specific data is essential to develop the most accurate software 
development estimate; and in the event that contractor-specific data is obtained, this document 
will serve as a detailed guide to the processes required to normalize and analyze this data and 
the resulting tools.  
 
1.2  HANDBOOK OVERVIEW 
 
Including the introduction (Section 1), this document consists of 11 sections. 
 
Section 2 of this document addresses the first step of the software development estimating 
process:  Defining the Problem.  It provides an overview of the standard data definition forms 
available to gather the essential technical and programmatic data required to develop a 
software development estimate. 
 
Sections 3 through 7 discuss the second step of the software development estimating 
process:  Effort Analysis.  Specifically, Section 3 - Software Database, addresses the data 
collection methods utilized to develop the NCCA Raw Software Effort Database, including the 
source databases, procedures and schema.  Additionally, because technology is evolving so 
quickly in the software development area, this section references several separate issue papers 
that should be taken into consideration when developing a software estimate.  These issues, 
such as the impact of tailoring military standards (MIL-STDs) or the use of Commercial-Off-The-
Shelf (COTS) software, are not represented in the NCCA Raw Software Effort Database and 
may ultimately affect the effort estimate.  Where data allowed, quantitative adjustments are 
provided to account for these types of advancements.  Otherwise, positions based on the 
qualitative assessment of various experts’ opinions are provided and recommended to be used 
until supporting quantitative data becomes available.  Section 4 - Effort Analysis:  Significant 
Drivers documents the analytical procedures followed to determine software development 
productivity drivers.  NCCA’s general goal was to identify the significant, objective, software 
development metrics which most affect productivity.  Due to the intended audience, NCCA 
wanted to eliminate as much subjectivity as possible when developing a software estimate.  A 
discussion concerning equivalent code conversion techniques is also provided.  Section 5 - 
Effort Analysis:  Normalized Regressions reviews the procedures followed to develop the 
final normalized database and the analytical approach utilized to develop the standard 
normalized set of software development estimating tools.  An evaluation of the resulting tools on 
a validation database is also provided.  Section 6 - Effort Analysis:  Non-Normalized 
Productivity Factors provides the analyst with a standard set of tools in the event the program 
being estimated does not meet NCCA’s normalization criteria.   
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Section 7 - Effort Analysis:  Overall Process presents the overall software development effort 
estimating process and an example of the resulting statistics when applied to a sample 
population of programs. 
 
Section 8 - Schedule Analysis addresses the third step of the software development 
estimating process:  Schedule Estimation.  This section documents the schedule databases 
and associated ground rules and assumptions for both the raw and normalized databases, and 
details the analytical approach followed to derive top-level factors and schedule estimating 
relationships, along with the tools’ associated strengths and weaknesses. 
 
Section 9 - Labor Rate Analysis addresses the fourth step of the software development 
estimating process:  Effort-to-Cost Conversion (Man-Year Rate) Estimation.  This section 
documents the labor rate databases and associated ground rules and assumptions for both the 
raw and normalized databases, as well as details the analytical approach followed to derive top-
level factors and cost (man-year rate) estimating relationships, along with their associated 
strengths and weaknesses.  Guidance is also provided on adjustment techniques to best reflect 
the current business base and acquisition strategy of the corporation. 
 
Section 10 - Risk Analysis discusses the fifth step of the software development estimating 
process.  It provides NCCA’s recommended approach for evaluating the risk associated with the 
software development effort, including source lines of code (SLOC) growth and estimated 
percent reused changes. 
 
Section 11 - Conclusions provides final remarks for the Phase One Handbook.   
 
Finally, a list of references, acronyms and supporting Appendices are provided.



 

 

DEFINING THE PROBLEM 
 
 
There are two basic types of information required to develop a quality software development 
estimate:  1) technical and programmatic information for the program being estimated and 2) 
technical and programmatic information for the analogous historical programs used to develop 
the estimate. 
 
Based on NCCA’s analysis, a software development estimate requires, at a minimum, the 
following information for the program being estimated: 
 
• Some measure of the work to be performed with associated units (i.e., SLOC counts, words, 

function points, etc.) 
 
• If SLOC is utilized as the unit of measure, the associated counting convention (i.e., physical, 

physical with comments, logical, etc.) 
 
• The programming language utilized (at a minimum Assembly versus Higher Order 

Languages (HOL (e.g., FORTRAN, Jovial, CMS-2, etc.)) versus Fourth Generation 
Languages (4GL)) 

 
• The condition of the code (i.e., percent new, percent reused (modified, verbatim, translated, 

rehosted, etc..)), with associated definitions 
 
• The phases of the software development life cycle to be estimated (e.g., System Design 

Review (SDR) through Formal Qualification Test (FQT)) 
 
• The development mode (at a minimum, embedded versus non-embedded) 
 
• If known, the name of the contractor responsible for developing the program.  As discussed 

previously, NCCA contends that contractor-specific data holds the greatest possibility for 
increasing the accuracy and decreasing the variance associated with the software 
estimating tools developed. 

 
Sections 3 through 6 provide definitions of the variables cited above, and discuss in detail how 
NCCA arrived at this list and the importance of obtaining each of the required inputs.  NCCA 
has developed a standard NCCA Software Program Definition Form with an associated Data 
Dictionary to facilitate the collection of the information cited above.  See Appendix A for these 
documents.  The NCCA Software Program Definition Form requests information in addition to 
that cited in the list above to support future improvements to this handbook.  Since all of the 
information requested affects the projected productivity of the development effort, it is crucial 
that the information gathered be as specific as possible. 
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In addition to the aforementioned information on the program being estimated, the analyst must 
compile the same information for the analogous contractor-specific historical programs that will 
be used to develop the cost estimating methodology.  Additionally, the actual effort, schedule, 
and cost (price) to develop the software, by software development phase if possible, should be 
obtained.  NCCA has also developed a standard NCCA Historical Software Data Request 
Form with an associated Data Dictionary to standardize the collection of historical data.  See 
Appendix A.  It is with this information that the most accurate productivity, schedule, and labor 
rate metrics can be developed.  If the Request for Proposal (RFP) was developed correctly, the 
Software Development Plan (SDP) Contract Data Requirements List (CDRL) is an excellent 
source of historical data.  The SDP typically requires a list of previously delivered programs 
developed by the contractor, with the associated technical and programmatic data.  If, however, 
the SDP is not available, this type of information can and should still be obtained from the 
contractor in whatever form is available.  When collecting historical data, the analyst must 
ensure that the information is for completed programs.  Often, projections of on-going efforts are 
mixed in with actual completed programs.  Since software development is continuously 
evolving, the analyst should always try to obtain the most recent data available.  Thus, the 
regressions and factors presented within this document can be continuously updated to capture 
the latest technological trends. 
 
Finally, NCCA has documented the procedures the in-house analyst should follow when 
entering new data into the NCCA Raw Software Effort Database.  Appendix A also includes the 
NCCA Historical Software Data Request Form’s Mapping Procedures. 



 

 

 

SOFTWARE DATABASE 
 
 
3.1  INTRODUCTION 
 
This section of the handbook documents the source databases, procedures and schema used 
to create the NCCA Raw Software Effort Database.  The NCCA Raw Software Effort Database 
(hereafter called the NCCA Raw Database) is a conglomeration of several historical software 
databases from both internal NCCA and external sources.  The NCCA Raw Database drew 
upon data currently available to NCCA and was designed for a top-level software cost analysis.  
NCCA defines a Phase One analysis as one that relies on basic objective inputs.  It uses either 
top-level productivity factors or estimating relationships (equations derived using least squares 
regression) to estimate the effort and schedule of a software program. 
 
The NCCA Raw Database contains a total of 457 records from many different Department of 
Defense and National Aeronautics and Space Administration (NASA) software development 
programs at both the program and CSCI-level.  There is a variety of information provided, 
including effort, schedule, and technical information, such as programming language, mode of 
development, size, and operating platform.  The database has 73 descriptive fields; however, 
not all fields are complete for every record.  At a minimum, effort and size are provided for every 
record.  Many of the source databases NCCA used in this analysis contained more than 73 
fields.  Some of these fields were unique to a particular database.  For instance, the Space and 
Missile Center (SMC) Database was the only database that had fields containing each software 
development review date.  The various types of classification fields included in the database 
allow the analyst to filter data into subsets that are analogous to the program being estimated.  
The fields NCCA chose to include in the NCCA Raw Database have the most potential for use 
in a top-level software cost estimate. 
 
The programs were developed from the early 1970s through the early 1990s.  All major 
programming languages, including C, FORTRAN, Pascal, Ada, Assembly, JOVIAL, CMS-2, and 
COBOL, are represented in the NCCA Raw Database.  The size of the programs range from 2.2 
to 1,800 KSLOC, while the individual CSCIs range from 0.4 to 595 KSLOC.  Since the program 
and contractor names were unknown in most of the source databases, NCCA screened the 
entire raw database to ensure that data points were not duplicated. 
  
The following subsections will describe the NCCA Raw Database in detail: 
 

• Ground Rules and Assumptions 
• Data Field Definitions 
• Raw Data 
• Results 
• Conclusions 
• Future Efforts 

 

3 



Section 3 - Software Database 
 

3 - 2   

3.2  GROUND RULES AND ASSUMPTIONS 
 
This subsection discusses the general assumptions and ground rules followed to create the 
NCCA Raw Database.  It is divided into three parts:  Assumptions for Sizing, Assumptions for 
Scope of Effort and Distribution, and Other Assumptions.  Some assumptions are specific to a 
particular source database and are described in the Raw Data section. 
 
3.2.1  ASSUMPTIONS FOR SIZING 
 
Counting SLOC can be a source of great ambiguity.  It is highly probable that different people 
can view the same source code and use the same definition for SLOC, but count the source 
code very differently.  The first set of assumptions addresses this problem. 

• NCCA assumed the definition of SLOC was consistent throughout a particular source 
database.  In other words, if the author of the database stated that SLOC were 
measured using Delivered Source Instructions (DSI), then NCCA assumed that all the 
data points within that database were, in fact, expressed as DSI. 

 
It is important to know how the SLOC were counted so that any productivity or effort estimating 
relationships developed will be valid.  There are two main categories of code counting 
conventions:  physical and logical.  Counting physical SLOC is accomplished by tallying the 
number of carriage returns in the source document.  Logical SLOC are counted by tallying 
logical units (for example, an IF-THEN-ELSE statement is considered one logical unit). 
 
The impact of counting convention cannot be overstated.  An Institute for Defense Analyses 
(IDA) study of four experimental FORTRAN programs, reference [1],  found that on average, 
physical SLOC produce a code size that is about 20 percent higher than counting the same 
code using a logical SLOC definition.  NASA's Software Engineering Laboratory (SEL), 
reference [2], also found wide differences between physical and logical code counts.  They 
found that a FORTRAN program’s ratio of physical lines to logical statements ranged from 2.5 to 
5 due to variations in the number of comments.  Likewise, reference [2] also stated that Ada 
programs exhibited a similar ratio of 2.5 to 6 physical lines per logical statement. 
 
Counting logical SLOC can be difficult since the definition of a logical unit is open to 
interpretation.  In Ada, counting logical SLOC is easier because non-commented statements are 
terminated with a semicolon.  Figure 3-1 shows an example of Ada source code.  The right 
column is the actual source code.  The left column shows two possible ways to count the SLOC.  
“1 P” indicates one physical line, “1 L” indicates one logical line, “1 C” means one comment line, 
and “1 B” means one blank line.  The “ï” character represents a carriage return. 
 
In the following example, there are seven physical SLOC (five are non-comment and non-blank) 
and four logical SLOC (and terminal semicolons).5  This counting result is subject to 
interpretation, and therefore, different results are possible.  Reference [3] provides a more 
thorough discussion about counting SLOC.  It also provides a sample checklist to help better 
define how SLOC are counted. 
 

                                                 
5The embedded semicolons in the third statement's literal string are not counted. 
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Type Source Line 
  
1 P, 1 L textio.putline (“Is this a SLOC?”); ï 
1 P if (x=5) ï 
1 P then textio.putline (“How about this; one;?”) ï 
1 P, 1 L end if; ï 
1 P, 2 L x:=1; y:=2; ï 
1 P, 1 B ï 
1 P, 1 C -- This is a comment ï 
  
P = Physical, L = Logical, B = Blank, C = Comment 

Figure 3-1:  Source Code Example 
 
• Due to the subjectivity involved, NCCA made no attempt to define or map the source 

database’s SLOC counting convention into a physical or logical category unless a 
SLOC definition was provided in the source database’s documentation.  Some of the 
embedded programs included both the terminal semicolon count and the physical 
SLOC count (non-comment, non-blank).  When both counts were available, NCCA 
used the terminal semicolon count. 

 
Not only is knowing the amount of source code necessary, but knowing the “condition” of the 
code is also important.  NCCA uses the term condition to describe the composition of the source 
code (i.e., %new and %reused). 
 
• NCCA made no assumption about the amount of new SLOC a program or CSCI 

contained.  In other words, when the source database did not provide this level of 
detail, only the total SLOC was shown in the NCCA Raw Database. 

 
The amount of higher order language (HOL) a program or CSCI contains is also an important 
factor to consider. 
 
• All programming languages, except Assembly language, are defined as HOLs.  If a 

program contained both Assembly and HOL, but the code condition (i.e., %new and 
%reused) for each language was unknown, then NCCA assumed the distribution for 
both HOL and Assembly code was the same as that for the total program. 

 
For example, the non-shaded portions of Table 3-1 show how the source databases would 
typically provide their SLOC information.  The numbers in the shaded boxes were not provided 
by the source databases, but were derived using the above assumption. 
 

 SIZE (KSLOC) NEW KSLOC REUSED KSLOC 
Total Program 1000 500 500 
HOL Portion 800 400 400 
Assembly Portion 200 100 100 

Table 3-1:  Allocation of New HOL and New Assembly SLOC 
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This assumption may not be accurate for some data points.  It is possible that an even greater 
percentage of the new SLOC in the above example is in HOL.6  Analysts should ask for the new 
and reused SLOC by language (i.e., try to avoid having to derive values). 
 
Total SLOC for each program in the NCCA Raw Database represents the sum of their 
sub-components (i.e., new, modified, verbatim, etc.).  In the raw database, NCCA made 
no effort to convert the raw sum into equivalent new source lines of code (ESLOC).7 
 
3.2.2  ASSUMPTIONS FOR SCOPE AND DISTRIBUTION OF EFFORT  
 
When using historical software effort data, it is important to consider the level of requirements 
under which the software was developed.  A major program may have several software 
development efforts spanning different acquisition phases.  For example, typical acquisition 
strategies for new aircraft programs require a “fly-off”8 between at least two competing 
contractors.  This typically requires development of prototypes and associated software during 
the Program Definition and Risk Reduction (PDRR) Phase, formerly known as the 
Demonstration and Validation (DEM/VAL) Phase.  After a competitive selection process, one 
contractor's design is chosen for further development.  Final development takes place during 
the Engineering and Manufacturing Development (EMD) Phase, where software development 
occurs once again for the deployable software.  The contractor may be able to reuse code from 
the PDRR Phase. 
 
The non-deployable software developed in the above example for the PDRR Phase may not 
undergo the same level of documentation, testing, or review as software developed in the EMD 
Phase for deployment.  As a result, using historical PDRR data points to estimate effort in the 
EMD Phase may not be appropriate without further adjustment. 
 
• Historical software development programs in the NCCA Raw Database represent 

deployed software developed in the EMD Phase.  Additionally, all data included in the 
NCCA Raw Database came from completed efforts unless otherwise indicated in the 
Note Fields (#69 through #71) of the database. 

 
Another potentially related software problem is that some of the effort may have been performed 
in a prior acquisition development phase.  For example, it is possible that one of the software 
development phases, Software Requirements Analysis, took place during PDRR.  This section 
will discuss the software development phases in greater detail later.  If this occurred, and if 
separate contracts were signed for the PDRR and EMD Phases, then the total cost and effort 

                                                 
6 DoD program managers are strongly encouraged to minimize the new development of software in Assembly language.  Assembly 
code is a low -level language that has processor specific commands and conventions.  While very powerful, Assembly language is 
difficult to rehost on new or different hardware platforms (see page 3-9 for a discussion of rehosting), and it is harder to maintain. 
Analysts should question the accuracy of any modern data point that displays a significant amount of new Assembly . 
7 The process (described by Boehm [5]) of converting raw SLOC into ESLOC relies on an assumed distribution of effort.  (Reference 
[5] uses the 40/30/30 rule:  40 percent design modified, 30 percent code modified, 30 percent of integration required for modified 
software.)  This distribution is not supported by underlying data, therefore, the analyst cannot develop an uncertainty range around 
the converted SLOC.  NCCA develops “default” conversion factors in Sections 4, 5 and 6.  These factors will have a variance 
associated with them to enable the analyst to perform a more accurate risk/uncertainty analysis.  As more data becomes available, 
the conversion factors will be updated. 
8 A competitive development between two or more contractors which produces prototypes.  This culminates in a “fly-off” where each 
competing design is demonstrated to the user (i.e., an actual flight demonstration). 
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for the deployed software would be under-reported unless a portion of the PDRR costs were 
added to the EMD contract.  Figure 3-2 depicts the problem.  
 

How Much Does the Software  Really  Cost?
Reqt’s
Effort Remaining Software Development

EMD

Total Software Effort

PDRR

 
Figure 3-2:  Example of Software Development Across the Acquisition Phases 

 
• Hence, NCCA assumed all software development phases from the SDR through the 

FQT occurred in the EMD Phase.  Furthermore, review dates are assumed to be 
completion dates.  NCCA made no assumption about what part of the month a 
program started or finished. 

 
3.2.3  OTHER ASSUMPTIONS 
 
Simulation code is typically developed to test the operational software and is not usually 
delivered to the user.  Therefore, it does not usually undergo the same level of rigor or 
documentation as operational software. 
 
• Hence, all simulation systems were classified as ground-support systems, which are 

typically low in complexity.  This assumes that, despite the particular mission of the 
software, simulation systems are inherently similar and do not suffer the same type of 
physical constraints as actual mission systems. 

 
3.3  DATA FIELD DEFINITIONS 
 
A record in the NCCA Raw Database contains 73 data fields.  These fields describe various 
attributes of a software program.  However, not all fields are complete for each record.  Most 
records contain the following general information: 
 
  1)  Program name, if known 
  2)  Platform 
  3)  Program- or CSCI-level 
  4)  Size (SLOC) 
  5)  Programming language 
  6)  Effort expended (man-months) 
  7)  Duration 
  8)  Acquisition phase 
  9)  SLOC counting convention 
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10)  Software development phases included in the reported effort 
11)  Contractor name, if known 
12)  Notes 
 
These 12 fields were commonly used in all of the databases that NCCA referenced and were 
more objective than many other fields available.  In contrast, some of the fields in the NCCA 
Raw Database were specific to the original source database.  For example, the MITRE Non-Ada 
Database separated the development effort by phase, while the other source databases 
provided total effort only. 
 
Below is a list of field descriptions.  More detailed definitions of the key fields will be provided in 
Section 4 - Effort Analysis:  Significant Drivers.  The terms in bold are field names as they 
appear in the NCCA Raw Database.  The first 13 fields provide programmatic and classification 
information: 
 
 1)  Rec:  The key code name NCCA assigned to the program or CSCI. 
 
 2)  Program:  The name (if known) of the overall program (e.g., BSY-1, SLQ-32, etc.).  
This information is business sensitive and is withheld from the sanitized version of the 
NCCA Raw Database.  See Appendix B for this information.   
 
 3)  Program CSCI:  The name (if known) of the CSCI in the program.  “Total” is the sum 
of all the CSCIs within a program.  This information is business sensitive and is withheld 
from the sanitized version of the NCCA Raw Database.  See Appendix B for this information. 
 
 4)  Platform:  The major target environment of the operating software, including the 
following designations: 
 

Ship:  Ship or submarine-based system 
 
Ground:  Ground-based system, including simulation systems 
 
Air:  Manned or unmanned aircraft or missile system 
 
UNMNDSP:  Unmanned space system 

 
 5)  CSCI?:  This field contains “Y” if the record is CSCI-level and “N” if it is program-
level.  No data was collected below the CSCI-level (i.e., at the Computer Software Component 
(CSC) or Computer Software Unit (CSU) - level). 
 
 6)  SW Class:  A classification of the software’s top-level function.  Software is typically 
classified into three categories:  application, support, and system.  System code is the most 
difficult to develop, while support code is the least difficult.  Refer to Section 4 - Effort Analysis:  
Significant Drivers for further definitions and examples. 
 

7)  Status:  A classification of the software’s mission as it pertained to the end user.  
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The status classifications were operational and non-operational as defined below.9 
 

OP:  Operational software (i.e., actual mission software that was delivered to the user). 
 
NOP:  Non-operational software, as follows: 
 

PGS:  The program generation support software used to develop the operational 
software, but not necessarily delivered to the user. 
 
SIM/STIM:  The software developed to test operational software, but not 
necessarily delivered to the user (e.g., software utilized to generate artificial 
sonar signatures to test a sonar system). 

 
 8)  Mission:  The specific function the software performs.  For a program with multiple 
CSCIs, this field contains the same value for each CSCI.  The NCCA Raw Database includes 
the following missions: 
 

C3:  Command, control, and communications (C3).  Information systems that gather, 
control, process, and distribute strategic, tactical, intelligence, and message data (e.g., 
MILSTAR and GPS). 
 
RADAR:  Systems that use microwave energy to detect, determine range, and track 
ground or airborne targets as defined in reference [4].  Includes all radar on ships, 
aircraft, and ground systems (e.g., SPY-1). 
 
SIM:  Simulation systems (e.g., F-18 trainers). 
 
EW:  Electronic warfare systems, such as jamming and countermeasure systems (e.g., 
ASPJ). 
 
SONAR:  Ship systems, similar to radar, which use sound waves instead of microwaves 
(e.g., BQQ-5). 
 
ASW:  Anti-submarine warfare systems.  A collection of major sub-systems that detect 
and/or neutralize enemy submarines (e.g., BSY-2). 
 
TORP:  Air-, ship-, or submarine-launched weapon systems that move through water to 
destroy ships or submarines (e.g., MK48). 
 
MINE:  Explosive devices that deter both personnel and enemy vehicles from entering a 
protected area.  Mine systems include mine countermeasures (e.g., SLQ-32). 
 
MISSILE:  Ground-, sea- or air-launched, self-powered weapon system (e.g., AIM-9X 
and Standard Missile). 

                                                 
9None of the source databases had a field to track the operational status of the code, but NCCA plans to collect this type of 
information for future analysis.  NCCA attempted to classify the operational status of the SLOC in the current version of the 
database, but subsequent analysis of the data revealed either non-significant or illogical relationships.  See Section 4 – Effort 
Analysis:  Significant Drivers for more on this analysis.  Therefore, NCCA will clear this field in later versions of the database (i.e., all 
records in the database will have a blank Field #7) until more accurate data is obtained. 
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MIS:  Management Information Systems.  Non-weapon system, such as financial 
systems, inventory systems, decision support systems, etc. (e.g., NALCOMIS and 
JCALS). 

 
 9)  Major Function:  Some data sources supplied more information on the specific 
function of the CSCI (e.g., display or message processing or executive control).  Unlike the 
Mission field, this field may vary at the CSCI-level within the same program. 
 
 10)  Lang1:  The name of the primary (greater than 50 percent of the total SLOC) 
programming language used to code the software. 
 
 11)  Lang2:  The name of the programming language that constitutes the next highest 
percentage of the total SLOC. 
 
 12) CSCI Count:  For program-level data, the total number of CSCIs in the program.  
For CSCI-level data, the count equals one.  For program-level data the count can also equal 
one (i.e., the program consisted of only one CSCI). 
 
 13)  HOL:  The percentage of total SLOC written in an HOL.  If this field contained a 
value, it was between zero and one. 
 
The next seven fields refer to software size.  Sizing within the NCCA Raw Database was 
expressed in SLOC.  Documented sources seemed to follow Boehm's counting convention [5] 
of including only delivered code.10  Fields #15 through #19, expressed as percentages, further 
defined total SLOC.  If they contained a value, it was greater than or equal to zero, but less than 
or equal to one. 
 
 14)  Total:  This is the total raw sum of new and reused (modified, verbatim, rehosted, 
translated) SLOC. 
 
 15)  New:  The percentage of the total SLOC that is new.  New was defined as “freshly 
made and unused.” 
 
 16)  Mod:  The percentage of the total SLOC that required some amount of redesigning, 
recoding, and retesting.  The effort to modify code is usually less than the effort to create new 
code. 
 
 17)  Verbatim:  The percentage of the total SLOC that was used “as-is” with no 
redesigning or recoding.  Note that this code may or may not need retesting at the CSU-level. 
 
 18)  Rehosted:  The percentage of the total SLOC originally written for one source 
architecture, but moved to another (sometimes different) architecture.  For example, taking 
Lotus 1-2-3 source code from the Intel 486 platform and compiling it to run on the Motorola 
68000 platform is a rehosting effort.  A second interpretation of rehosted code is transferring 
code from one operating system to another.  An example of this type of rehosting effort is to 
                                                 
10Non-delivered code includes “deleted” SLOC.  This count is important, but is usually not captured.  Deleted code indicates how 
much rework is performed if the program is entirely new.  SLOC may also be deleted when programs are reused or “re-engineered.”  
While deleting code in and of itself probably is not too difficult, there are times when problems occur, resulting in additional and 
unexpected effort. 
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convert Lotus 1-2-3 source code written for Disk Operating System (DOS) and operate it under 
the OS/2 operating system.  Consequently, it is possible to find software programs where the 
rehosted code not only represents changing architecture, but also represents changing 
operating systems.11 

 
 19)  Translated:  The percentage of the total SLOC that was converted from one source 
language to another.  Converting a program from C to Ada is an example of translated code.  
Typically, using an automatic translator which converts one programming language to another 
can save much effort. 
 
 20)  Comments:  The total number of comment SLOC. 
 
Fields #21 and #22 (Name and Count) identify how the SLOC were counted: 
 
 21)  Name:  The source database classification for SLOC. 
 

DSI:  Delivered Source Instructions.  As discussed in reference [5], DSI include 
delivered executable SLOC, data declarations, job control language (JCL) statements, 
and INCLUDE files (counted once).  DSI exclude comments, prefaces, file boundary 
statements, COTS software that is not modified, non-delivered support software, and 
non-delivered test software.  Note:  NCCA defined DSI as logical SLOC.  See reference 
[3]. 
 
CR:  Carriage Return.  All lines are counted regardless of programming style, including 
comments and blanks.  May or may not include non-deliverable test software.  NCCA 
classified this as physical SLOC.  See references [1] and [2]. 
 
TSC:  Terminal semicolons.12  This terminology is usually associated with Ada and C++ 
programs.  Includes all statements that terminate with a semicolon.  NCCA classified this 
as logical SLOC.  (See reference [1].)  Counting with terminal semicolons is the more 
objective method for counting logical SLOC. 
 
SLOC:  Software Architecture Sizing & Estimating Tool (SASET) defines SLOC as 
source lines of code that  “consist of all executable statements, plus inputs/outputs, 
format statements, data declaration statements, deliverable JCL statements, and 
procedure-oriented language statements.  SLOC does not include statement 
continuations, database contents, CONTINUE statements, or program comments”  [6]. 

 
SMC [7] defined SLOC as “. . . a single instruction, not necessarily a physical line.  Comments 
are not counted.  As an example in Ada, source SLOC are counted by the number of [terminal] 
semicolons” and include the following statements: 

                                                 
11Legacy code that is written in Assembly language is difficult to rehost. 
12The terminal semicolon count and other logical counting schemes are preferred because they produce a size parameter that is 
less sensitive to coding style.  Since programming styles influence physical SLOC counting conventions, programmer productivity 
could be artificially high (when productivity is defined as physical SLOC per hour) merely because compound constructs are broken 
into separate lines.  For instance, if an IF-THEN statement is split into more than one line, it would count for more than one physical 
SLOC.  In Ada, executable and declarative statements are terminated with a semicolon.  This means that in the previous example, a 
multi-line IF-THEN statement counts as one statement.  Care must still be taken to ensure that if an automated code counter is 
used, it does not count semicolons embedded in comments or strings.  See reference [3] for a discussion of the issues surrounding 
counting SLOC. 
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Control (DO While, DO Until, GOTO) 
Mathematical (i=a**b=c) 
Conditional (IF-THEN-ELSE) 
Deliverable JCL statements 
Data declaration statements 
Data typing statements and EQUIVALENCE statements 
Input/Output format statements 
 
but exclude 
 
Comments 
Blank lines 
BEGIN statements from BEGIN-END pairs 
Non-delivered programmer DEBUG statements 
Continuations of format statements 
Machine- or library-generated data statements 

 
Even though the SASET and SMC definitions of SLOC were slightly different, NCCA classified 
both of these as logical SLOC.  The Software Engineering Institute (SEI) [3] defined SLOC as 
physical SLOC.  Other source databases used the generic term SLOC, but did not provide 
definitions.  
 
 22)  Count:  Based on the previous definitions, this field contains NCCA's mapping of 
the source database’s SLOC classification (Field #21). 
 

CP:  Commented Physical SLOC 
 
P:  Non-commented Physical SLOC 
 
L:  Non-commented Logical SLOC 
 
?:  Not enough information for an assessment 

 
The next seven fields provide development and process information: 
 

23)  Mode:  The development environment of the software program.  Mode designations 
are embedded, semi-detached, or organic.13  Refer to Section 4 - Effort Analysis:  Significant 
Drivers for further details. 
 
 24)  Period:  The acquisition phase of contract performance.  This field contains either 
CED (Concept Exploration and Definition), PDRR (previously known as DEM/VAL), EMD or a 
blank, if unknown.  NCCA has not discovered any data points that span more than one 
acquisition phase. 
 

                                                 
13 The MITRE Non-Ada Database [6] also included a fourth mode called firmware (FW).  The Mitre Non-Ada Database (DB #1), the 
Mitre Ada Database (DB #2), the REVIC Recalibration Database (DB #7), and certain programs from the Navy Internal Database 
(DB #5) provided the development mode.  For the remaining databases, NCCA subjectively mapped programs into the applicable 
mode designations, if enough information was provided.  For an example, refer to the SMC software database discussion on  
page 3-19. 
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 25)  MM.eq.152:  Contains either “Y” or “N.”  If “Y” appears in this field, then either the 
source database recorded the effort in hours, used a 152-hour man-month, or used a different 
hour per man-month value and NCCA normalized the reported effort to a 152-hour man-
month.14  If “N” appears in this field, the source database did not provide the hours per man-
month. 
 
 26)  Hrs/MM:  The actual hours per man-month recorded by the source database.  
Values significantly less than 152 hours per man-month may indicate that the schedule was 
extended and values significantly greater than 152 hours per man-month may be an indication 
that the schedule was compressed.  Most schedule estimation models are based upon a 
historical database of actual schedule and actual effort.  When the hours per man-month are 
increased, the corresponding schedule decreases.  The values in this field ranged from 150 to 
176 hours per man-month. 
 
 27)  Method:  The software development method (process) followed.  The types of 
methods are waterfall, incremental, spiral, and evolutionary.  Refer to the NCCA Software 
Glossary and Primer or reference [5] for further details. 
 
 28)  Peak:  The highest number of persons used during the development effort at one 
time. 
 
 29)  Average:  The average size of the program staff (number of persons) during 
development.  This was calculated by dividing the total effort by the total elapsed development 
time.  The values for effort and time should be of the same scope (i.e., if the effort scope is SDR 
through FQT, then schedule scope should also be SDR through FQT). 
 
The next seven fields describe the amount and scope of effort: 
 
 30)  TotalMM:  The total effort (man-months) expended to develop the software.  If the 
source database provided a breakdown, total effort was decomposed into the following software 
development phases: 
 
 31)  Reqmnts:  The total effort expended during the requirements phase.  Activities 
include a basic draft of the software documentation, including the SDP, Software Requirements 
Specification (SRS), and Software Test Plan (STP).  The Interface Control Document is also 
finalized during this phase.  Most of the source databases either did not include this effort or did 
not state that the effort was included elsewhere.  Requirements are sometimes generated 
during the PDRR Phase of the program, and therefore, may not be captured on an EMD 
contract. 
 
 32)  EDT (Design Total):  The total effort expended in the design phase.  This is the 
sum of Fields #33 and #34 (Preliminary and Detailed Design Effort), as defined below: 
 
 33)  EPD (Preliminary Design):  All effort expended between the Software Specification 
Review (SSR) and Preliminary Design Review (PDR).  Activities include finalizing the system 

                                                 
14For example, if the source database reported total effort as 100 man-months and stated that 1 man-month = 173 hours, then 
NCCA re-calculated the effort and recorded it as 173/152 x 100 = 114 man-months.  Most of the source databases recorded their 
effort using 152 hours per man-month; therefore, NCCA normalized man-hours to this standard. 
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requirements specifications (A spec), finalizing the CSCI test plans, and finalizing the database 
requirements.  Functional design specifications for each CSCI, including identification, sizing, 
and language, are generated. 
 
 34)  EDD (Detailed Design):  All effort expended between the PDR and the Critical 
Design Review (CDR).  Activities include preliminary test procedures, detailed flow charts for 
each CSCI, database specifications, and a final requirements traceability matrix. 
 
 35)  ECUT (Code and Unit Test):  All effort expended from the CDR to the Test 
Readiness Review (TRR), including testing of individual software units and informal testing. 
 
 36)  EIT (Integration and Test):  The effort to successively integrate and test all CSCs.  
This includes the FQT of each CSCI, but does not cover the CSCI-to-CSCI integration nor the 
integration and testing of the hardware with the software system [8]. 
 
In addition to providing the amount of effort by phase, the NCCA Raw Database has nine fields 
describing what is and is not included in the reported effort.  These nine binary fields contain a 
zero, one, or blank (if unknown).  These fields used ones and zeros so that they could be used 
as dummy variables in later regression analyses. 
 
 37)  REQ:  Did the reported total effort include effort for the Software Requirements 
Phase? Yes = 1, No = 0, Blank cell = unknown. 
 
 38)  PD:  Did the reported total effort include effort for the Preliminary Design Phase? 
Yes = 1, No = 0, Blank cell = unknown. 
 
 39)  DD:  Did the reported total effort include effort from the Detailed Design Phase?  
Yes = 1, No = 0, Blank cell = unknown. 
 
 40)  CUT:  Did the reported total effort include effort for the Code and Unit Test Phase?  
Yes = 1, No = 0, Blank cell = unknown. 
 
 41)  CSC TST:  Did the reported total effort include effort for the CSC Testing Phase?  
Yes = 1, No = 0, Blank cell = unknown.  
 

42)  CSCI TST:  Did the reported total effort include effort for the CSCI Testing Phase?  
Yes = 1, No = 0, Blank cell = unknown. 
 
 43)  SIT:  Did the reported total effort include effort for the System Integration and Test 
Phase?  Yes = 1, No = 0, Blank cell = unknown. 
 
 44)  OTE:  Did the reported total effort include effort for the Operational Test and 
Evaluation Phase?  Yes = 1, No = 0, Blank cell = unknown. 
 
 45)  Other:  Was another phase other than those mentioned above included?  Yes = 1, 
No = 0, Blank cell = unknown. 
 
The next three fields specify the program’s software schedule.  The detailed reviews are defined 
in Fields #54 through #64. 
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 46)  Start:  The completion date of the SDR.  If this date is unknown, the field is blank. 
 
 47)  Finish:  The completion date of the FQT.  If this date is unknown, the field is blank. 
 
 48)  Total Months:  The elapsed time from start to finish.  Units are calendar months.  If 
either the start or finish were unknown, then this field was blank.  There are some programs that 
did not have start or finish dates, but provided the elapsed time.  This elapsed time was 
included only if the documentation indicated that the start and finish were defined as SDR and 
FQT, respectively. 
 
The next five fields capture elapsed times for specific phases in the software development 
effort.  Elapsed time is in calendar months. 
 
 49)  TTD:  The total elapsed time for preliminary and detailed design combined.  This 
field is the sum of Fields #50 and #51 below. 
 
 50)  TPD:  The elapsed time for the Preliminary Design Phase. 
 
 51)  TDD:  The elapsed time for the Detailed Design Phase. 
 
 52)  TCUT:  The elapsed time for the Code and Unit Test Phase. 
 
 53)  TIT:  The elapsed time for the Software Integration and Test Phase, but does not 
include the System Integration and Test Phase. 
 
The next eleven fields, as shown in Figure 3-3 and defined below, provide completion dates for 
the various software reviews.  These reviews (and their definitions) come from DoD-STD-
2167A.  The adoption of MIL-STD-498, J-STD-016, ISO-12207 may pose trouble for collecting 
and analyzing this type of data in the future.  MIL-STD-498 shifts the focus from “formal” reviews 
to “informal” reviews.  Thus, many of the following reviews may not occur:  
 

54)  SRR:  System Requirements Review provides insight into the developer’s plan for 
the system configuration. 
 

55)  SDR:  System Design Review provides insight into the overall system requirements 
as a basis for establishing the system specification’s functional baseline. 
 
 56)  SSR:  Software Specification Review is a formal review of a CSCI’s requirements 
per the software specifications. 
 
 57)  PDR:  Preliminary Design Review provides insight into the developer’s progress and 
the correctness of the software components’ design. 
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 SRR        SDR            SSR                PDR         CDR                     TRR        FQT        PCA

   SYSTEM  SYSTEM SOFTWARE PRELIMINARY DETAILED CODING CSC CSCI SYSTEM TEST & PROD &
PHASES: RQTMTS    DESIGN RQTMTS DESIGN DESIGN & CSC INTEG & TESTING INTEG & EVAL DEPLOY

      ANAL TEST TEST TEST

SRR - System Requirements Review

SDR - System Design Review

SSR - Software Specification Review

PDR - Preliminary Design Review

CDR - Critical Design Review

TRR - Test Readiness Review

FQT - Formal Qualification Test

PCA - Physical Configuration Audit  
Figure 3-3:  Software Development Phases and Reviews 

 
58)  CDR:  Critical Design Review is a review that determines if the software design 

satisfies the requirements of the system and software specifications. 
 
 59)  PQT:  Preliminary Qualification Test is a phase not recognized in DoD-STD-2167A, 
but it was a field identified in one of the source databases.  This review occurs after the coding 
and CSC testing has been completed. 
 
 60)  TRR:  Test Readiness Review verifies that the developer has performed their own 
testing and has the resources, plans, and procedures to formally demonstrate to the 
government that the software works as an entity. 
 
 61)  FCA:  Functional Configuration Audit is performed by the government to determine 
if CSCIs perform in accordance with their respective requirements and interface specifications 
by examining the test and reviewing the operational and support documentation. 
 
 62)  PCA:  Physical Configuration Audit is the formal technical examination of the as-
built software product against its design. 
 
 63)  FQT:  Formal Qualification Test is the formal testing of the CSCI per the 
government approved test plans and procedures to verify that the CSCI fulfills the requirements 
of the SRS and to provide the basis for CSCI acceptance by the government. 
 
 64)  OTEVAL:  Operational Test and Evaluation  
 
More detailed definitions of these reviews can be found in the NCCA Software Glossary. 
 
The next five fields provide programmatic information: 
 
 65)  STD:  The military standard the software program was required to follow.  Possible 
values are “2167,” “483/490,” “1521,” “1679,” and “498.”  MIL-STD-498 (498) replaced  
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DoD-STD-2167A in 1993; however, the NCCA Raw Database does not yet contain any 
programs developed under 498.15 
 
 66)  Contractor:  The name of the prime contractor performing the software 
development.  This information is business sensitive and is withheld from the sanitized 
version of the NCCA Raw Database.  See Appendix B for this information. 
 
 67)  Source:  The source of information (other published software databases or cost 
reports) for each data point in the NCCA Raw Database.  This information is business 
sensitive and is withheld from the sanitized version of the NCCA Raw Database.  See 
Appendix B for this information. 
 
 68)  DB Code:  The code number NCCA assigned to each source database.  It is 
included in both the raw and the sanitized version of the NCCA Raw Database.  The index 
maps to the following databases: 
 
1) MITRE Non-Ada Database 
2) MITRE Ada Database 
3) SMC Database 
4) NASA SEL Database 
5) Navy Internal Data Sources 
6) Silver SASET Calibration Study Database 
7) Revised Intermediate Constructive Cost Model (REVIC) Recalibration Study Database 
8) IIT Research Institute (IITRI) Report Database 
 
 69) through 71)  Notes 1 through 3:  These fields inform the analyst of any specific 
assumptions or peculiarities about the data point.  They also describe potential problems with 
the data (e.g., the source did not indicate the hours per man-month associated with the effort). 
This information is business sensitive and is withheld from the sanitized version of the 
NCCA Raw Database. 
 
Finally, the last two fields are calculations generated by NCCA: 
 

72)  Prod1:  Productivity expressed as hours per SLOC based on the following formula: 
 

Total MM * 152 Hours/MM Hours/SLOC = 
Total SLOC 

 
This field is blank if Field #25 (MM.eq.152) equals “N.” 
 

73)  Prod2:  Productivity expressed as hours per new SLOC.  This metric is important 
because new SLOC tend to drive the effort.  (See Sections 5 and 6 for a more detailed 
explanation) 
 

                                                 
15NCCA is not currently collecting any software development efforts under commercial standards.  However, MIL-STD-498 expired 
in 1996, at which time, DoD intended to adopt the International Standards Organization (ISO) standard for software development.  
Refer to the NCCA Issue Paper “MIL-STD-498 versus DoD-STD-2167A” for a discussion of this topic. 
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Total MM * 152 Hours/MM Hours/SLOC = 
Total SLOC * New SLOC 

 
This field is blank if Field #25 (MM.eq.152) equals “N” or Field #15 (New) is blank or zero. 

 
3.4  RAW DATA 
 
This section describes the data sources, the type of data collected, and any general problems, 
comments, and adjustments or normalizations that were made to the raw data before entering it 
into the NCCA Raw Database. 
 
Most of the NCCA Raw Database originated from either published reports or externally 
developed software databases.  NCCA also collected some Navy internal data from previous 
Independent Cost Estimates (ICEs) and other analytical efforts.  A total of eight source 
databases were either used directly or as a reference for clarification: 
 
1) MITRE Non-Ada Database 
2) MITRE Ada Database 
3) SMC Database 
4) NASA SEL Database 
5) Navy Internal Data Sources 
6) Silver SASET Calibration Study Database 
7) REVIC Recalibration Study Database 
8) IITRI Report Database 
 
3.4.1  MITRE NON-ADA DATABASE 
 
Published in a 1987 MITRE report [8], this database contained over 110 CSCIs from 26 
programs.  Nineteen of the 26 programs came from the Air Force Electronic Systems Center 
(ESC).  Twenty-three of the 26 programs were complete.  The CSCI sizes ranged from 0.4 to 
492 KDSI, and the program sizes ranged from 8 to 1,113 KDSI.  The data originated from 
standard cost forms called M-forms.  The forms covered five different areas: 
 
1)  Program summary 
2)  Development and target computer 
3)  Computer Program Configuration Item (CPCI) summary 
4)  Resource expenditure 
5)  CPCI function and sizing 
 
Data sources for the MITRE internal and external contractor supplied data included technical 
reports, working papers, interviews, PDR and CDR briefing charts, and software requirement 
and product specification charts (B5 and C5 system engineering specifications).  MITRE 
attempted to use multiple sources for each program to verify that the data collected was correct.  
Their review resulted in the modification of some of the programs’ initial SLOC counts and Effort 
Adjustment Factor16 (EAF) multipliers. 

                                                 
16Special environment variables originally developed in the Constructive Cost Model (COCOMO) [5]. 
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The MITRE Non-Ada Database defines Delivered SLOC (DSLOC) as new code plus adapted 
DSI.  Some of the data points that had adapted DSI included the percent of adapted DSI that 
was redesigned, recoded, reintegrated, and retested.  The NCCA Raw Database classified any 
data point that was zero percent redesigned and recoded, but was reintegrated and retested, as 
verbatim SLOC.  The remaining adapted DSI (where the percentage of redesign and recoding 
were not equal to zero, or any data points that did not provide the percentage of redesign, 
recoding, and retesting information) were classified as modified SLOC. 
 
The MITRE Non-Ada Database counted SLOC using Boehm’s DSI definition (see page 3-9).  
MITRE also counted and reported the comment SLOC.  NCCA included this information in the 
NCCA Raw Database in Field #20 (Comments).  MITRE’s SLOC were mapped as logical 
SLOC. 
 
The programs for which MITRE collected data were written primarily in Assembly, FORTRAN, 
or Jovial, and were developed from the 1970s to 1980s.  The data collected represents 
development efforts following MIL-STD-1521A or MIL-STD-1521B.  However, since the 
documentation did not specify which programs were developed under 1521A vice 1521B, the 
development standard was not entered into the NCCA Raw Database.  MIL-STD-1521A did not 
define the SSR, but 1521B did. 
 
Effort data in the MITRE Non-Ada Database reflected all direct labor costs to develop software, 
including management, designing, programming, testing, and data collection.  It did not include 
system requirements analysis, implementation (installation, conversion, or training), and 
maintenance [8].  All effort was normalized to a 152-hour man-month and spanned SDR through 
FQT. 
 
NCCA deleted several of the MITRE Non-Ada data points for the following reasons: 
 
1) Data points #8, #10, #20:  Programs were either halted or were incomplete.  Program #10 

(Peace Shield) was incomplete in the MITRE Non-Ada Database, but was subsequently 
captured, when completed, in the SMC Database. 

 
2) Data point #2:  Effort was shown for all phases except Code and Unit Test.  It was not clear 

whether this effort was allocated to the other phases or was not available, hence not 
included. 

 
3) Data point #18:  Total effort was reported for the entire program, but the CSCIs for the 

program did not sum to the program total.  This implies that there was a mapping or 
allocation problem. 

 
Fields #33 through #36 (EPD, EDD, ECUT, and EIT) were used primarily in the MITRE Non-Ada 
Database.  The database also captured the COCOMO environment variables and various other 
metrics.  Due to the subjectivity of these variables, they were not included in the NCCA Raw 
Database.  Additionally, several of the programs provided effort by development phase.  MITRE 
provided effort for Preliminary Design, Detailed Design, Code and Unit Test, and Integration and 
Test.  However, software requirements were not separately identified; thus, NCCA does not 
recommend using the MITRE Non-Ada Database for phase-specific effort estimation or for top-
level distribution of effort. 
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Seventy-two data points were collected from the MITRE Non-Ada Database.  Overall, there is 
enough high quality data to perform a top-level normalized analysis using this database, but 
there are disadvantages: 
 
1)  The database contains no Ada programs. 
2)  The programs are old. 
3)  Some programs use significant amounts of Assembly language. 
4)  Program and contractor names are unknown in most cases. 
 
3.4.2  MITRE ADA DATABASE 
 
Published in a 1992 MITRE Report [9], this database contained information from 18 Ada 
programs with a total of over 50 CSCIs.  The database included software data for both weapon 
system (e.g., avionics) and MIS applications.  CSCI sizes ranged from 0.7 to 228 KDSI, and 
programs ranged from 2.3 to 340 KDSI.  This database tallied SLOC by counting terminal 
semicolons.  SLOC were divided into new, modified, and “lifted.”  NCCA mapped lifted SLOC 
into verbatim SLOC in the NCCA Raw Database. 
 
The reported effort followed the same Boehm definitions [5] and phases that were described in 
the MITRE Non-Ada Database, with the exception that the effort in the MITRE Ada Database 
covered the period from SSR through FQT.  Consequently, software requirements analysis was 
not included in the total effort. 
 
The semi-detached programs in the database came from a 1987 study which did not count 
semicolons, but instead used Delivered SLOC.  A 1.33 DSLOC to one semicolon factor was 
used in the study to convert size data given in DSLOC to semicolons.  This was one source of 
variation (or error) in the database.  No information was provided about the variance 
surrounding the conversion factor.  To avoid introducing subjectivity, NCCA converted the semi-
detached programs to their original SLOC (DSLOC) count and defined the SLOC as physical 
SLOC. 
 
The MITRE Ada Database included a field called “PDL Lines.”  PDL stands for Program Design 
Language.  PDL Lines are English-like statements (also referred to as “pseudo-code”) that aid 
the software engineer during the Preliminary Design Phase.  Some of the programs used Ada 
as the PDL.  NCCA defined PDL Lines as non-delivered code.  Since other programs tracked 
only delivered code, PDL Lines were not included in the total SLOC in the NCCA Raw 
Database.  The MITRE Ada Database Data Input Form clearly asked if PDL Lines were 
included or excluded from the total SLOC counts, so accurate mapping was possible.  Although 
PDL Lines were not included in the NCCA Raw Database, they may be a useful metric in the 
future as an indicator of the scope of effort in the design phase. 
 
Thirty data points were captured from the MITRE Ada Database.  However, several data points 
from the MITRE Ada Database were deleted for the following reasons: 
 
1) Data point #8:  Duplicate data point (AFATDS) from another database. 
 
2) Programs “?5” and “?6”:  The CSCIs’ names (“ENGLISH,” “FRENCH,” “DICTIONARY”) 

imply that they were commercial programs vice defense related efforts. 
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This database was promising because of the number of Ada programs.  However, the database 
does not capture the Effort Software Requirements Phase (i.e., effort did not start at SDR) and, 
therefore, this database is not recommended for estimating the full scope of effort (SDR through 
FQT) for software programs.  If software requirements analysis does not need to be estimated, 
the MITRE Ada Database is useful for top-level non-normalized productivity factors and 
regressions.  Additionally, schedule estimation with this database would require adjustments, 
since schedule was also typically captured from SDR through FQT.  Since the effort was 
collected starting at the SSR, an entire phase (Software Requirements Analysis) of effort was 
missing.  The implication is that an analyst would have to either construct regressions to 
estimate a full software development schedule using an independent variable that does not 
reflect the full software development effort or artificially inflate the effort to reflect the full phasing 
required. 
 
3.4.3  AIR FORCE SPACE AND MISSILE SYSTEMS CENTER (SMC) 

SOFTWARE DATABASE 
 
The Air Force SMC Software Database is a 2,600 record database maintained and updated by 
Management Consulting and Research, Inc. (MCR) under contract to the Air Force SMC.  The 
data was originally contained in the Space Systems Cost Analysis Group (SSCAG) Software 
Database and has since been expanded.  The database is in a Windows format that can be 
queried and exported to a spreadsheet. 
 
The SMC Database has extensive information for each record and covers program-level down 
to CSU-level information.  However, many of the records' fields are blank.  NCCA extracted as 
many well defined data points as possible from this database.  A data point was considered well 
defined if the following information was available:  size, effort, and hours per man-month. 
 
The SMC Database's SLOC were mapped as logical SLOC and included information on both 
new and reused SLOC.  In the SMC Database, reused code may have contained some 
information about the percent of code that was redesigned, modified, or retested.  Similar to the 
MITRE Non-Ada Database, any record in the database that contained reused SLOC, but did not 
contain information about the percent redesigned, modified, or retested, was mapped into 
modified SLOC.  If the reused code had zero percent redesign and zero percent re-coding, 
NCCA mapped it into verbatim SLOC.  The SMC Database also contained a field to track the 
level of rehosting that a program experienced.  The values ranged from NOMINAL to EXTRA 
HIGH.  SMC defined VERY HIGH as a program with a major language or system change (refer 
to Field #19 (Translated) in the Data Field Definition section for further information).  EXTRA 
HIGH is defined as a program having a major language and system change.  If the program 
indicated the rehosting effort to be VERY HIGH or EXTRA HIGH, then the reused SLOC from 
the SMC Database was mapped into the NCCA Raw Database as rehosted code. 
 
In addition to new and reused SLOC, the SMC Database included common SLOC.  Figure 3-4 
shows a graphical representation of the difference between new and common SLOC.  Common 
SLOC are SLOC in an individual CSCI that are identical to code in other CSCIs of the same 
program. 
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Figure 3-4:  New Code versus Common Code  
 
It was difficult to use this information because the SMC Database did not tag these CSCIs to 
indicate which ones belonged to the same program.  At the program-level, common SLOC were 
counted once as new SLOC in the program count.  However, at the CSCI-level, several 
counting approaches could have been utilized.  The common SLOC could have been counted 
as new SLOC for the CSCI in which it was first developed, while subsequent CSCIs that used 
the common SLOC would have counted it as reused SLOC.  A second approach to counting 
common SLOC at the CSCI-level would have been to prorate it into each CSCI's new SLOC 
count.  A total of five SMC data points in the NCCA Raw Database have common SLOC.  In the 
end, NCCA mapped common SLOC into verbatim SLOC. 
 
A total of 38 unique data points from the SMC Database were included in the NCCA Raw 
Database.  Some of the 38 records did not contain the hours per man-month.  However, NCCA 
reviewed an older version of the SMC Database (the SSCAG Database) from 1989, which 
explained that the original raw data was expressed in hours and was converted to man-months 
using the 152 hours per man-month conversion factor.  Thus, NCCA was able to verify that 152 
hours per man-month were utilized for 35 of the 38 data points.  An additional 41 data points 
from the same database were duplicated in the REVIC Recalibration database. 
 
The SMC Database contained programs and CSCIs with different scopes of effort.  The SMC 
Database used “check boxes” to indicate what software development phases were included in 
the reported effort.  NCCA adopted a similar approach to delineate which phases were in the 
reported effort for the SMC Database and all other data sources (if this information was known). 
 
The SMC Database did not contain a mode field; hence, NCCA used internally developed rules 
to determine the mode of development.  The data points were classified as “embedded” if the 
architecture field indicated that it was “tightly coupled” or if the requirements volatility rating was 
set to at least HIGH.  The data points were considered “not embedded,” if the points did not 
satisfy these criteria (i.e., no attempt was made to discriminate between semi-detached  and 
organic programs). 
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Additionally, some SMC data points indicated the percentage of total effort by contractor 
functional area (i.e., systems engineering, configuration management, quality assurance, data, 
etc.).  This information was not included in the NCCA Raw Database, but may be useful in 
future research.  The SMC Database also included a section for maintenance data.  
Unfortunately, there were only two programs in the database with maintenance information. 
 
Overall, the 79 data points extracted from the SMC Database are of high quality.  Weaknesses 
of these data points include the following: 
 
1) The linkage of CSCIs to their associated programs was unknown. 
 
2) The database did not provide the CSCI count for program-level data, which may be an 

important factor when estimating integration costs. 
 
3) Program and contractor names were unknown, which reduces the users’ ability to identify 

the best analogies possible and increases the risk of duplicating data points when combined 
with other databases. 

 
4) Effort information, by phase, was not provided. 
 
5) The database did not indicate if CSCI schedules were specific to individual CSCIs or 

represented the top-level program schedule. 
 
3.4.4 NASA SOFTWARE ENGINEERING LABORATORY (SEL) 

DATABASE 
 
The SEL is sponsored by the NASA Goddard Space Center in Maryland.  The SEL collects and  
analyzes software development data to investigate the effectiveness of software engineering 
technologies. 
 
References [2] and [10] provided a total of 37 data points to the NCCA Raw Database.  These 
programs were NASA programs which were predominately ground-based, satellite-support 
programs.  The support software programs were either attitude ground-support or telemetry-
simulation software.  The software applications were used to determine and predict the orbit and 
attitude of Earth-orbiting satellites.  The data covered the mid-1970s to early 1990s.  A total of 
11 programs were written in Ada; the rest were written in FORTRAN.  The programs ranged in 
size from 9.1 to 338 KSLOC. 
 
The data in the above referenced reports is a subset of a much larger NASA SEL Database.  
This larger database, maintained by the Rome Air Development Center, contains extensive 
information on 104 programs and includes error data, detailed product characteristics, effort, 
growth history, change history, and program information.  NCCA did not attempt to collect data 
from this database, since additional data collection efforts will be the focus of NCCA’s future 
software efforts. 
 
The SEL counted SLOC by including every carriage return in the source code.  This count 
included comments and blank lines [10].  NCCA interpreted this as physical SLOC.  However, 
the 1995 report [2] added statement counts as well.  Statements are defined as the number of 
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logical statements and declarations.  Recall that NCCA's first choice is to use the statement 
count; however, not all programs had both counts.  For those programs that did not have a 
statement count, NCCA used the total SLOC and classified them as commented physical (CP) 
SLOC in the NCCA Raw Database.  Programs that had statement counts were classified as 
logical (L) SLOC. 
 
The SEL segregated source code into newly written, extensively modified (25 percent or more 
of the code was modified), slightly modified (less than 25 percent of the code was modified), 
and verbatim code.  NCCA mapped newly written code into Field #15 (New), extensively and 
slightly modified code into Field #16 (Mod), and verbatim code into Field #17 (Verbatim).  (See 
the Data Field Definitions section). 
 
The SEL Database provided effort in man-hours by both phase (design, code and test) and 
WBS activity.  Schedule was provided in months by phase.  The effort covered from pre-
program (software requirements) through clean up (system acceptance and test).  The data also 
captured other support efforts such as upper management, librarians, technical publications, 
and secretarial support over the same period.  Some of these efforts (upper management and 
secretarial support) were overhead, while others were classified as direct support (librarians and 
technical publications).  Since these indirect efforts cannot be separated from other direct 
support efforts, the entire effort was included in total effort in the NCCA Raw Database.  
Additionally, effort was converted to man-months using the 152 hours per man-month factor.  
No information was given as to the actual hours per man-month (factory hours per man-month) 
that the staff experienced; however, this did not create a normalization problem since the 
original reported units of effort were in man-hours. 
 
The SEL Database included both System Test and Acceptance (Operational) Test in the 
reported effort.  However, since it was identified separately, NCCA was able to remove all 
system-level testing from the reported effort.  Therefore, SEL data points in the NCCA Raw 
Database reflect effort from SDR to the completion of the CSCI test phase (FQT). 
 
The SEL schedule data included preliminary design efforts.  Hence, NCCA mapped the SEL 
Database’s program start date to the completion of the SSR, Field #54 (recall from Figure 3-3 
that preliminary design starts after SSR).  The SEL Database included both system and 
acceptance testing.  Therefore, the program’s end date was mapped to the completion of the 
Operational Test and Evaluation (OTE) in the NCCA Raw Database because completion of 
OTE guarantees that all system and acceptance testing is complete.  
 
Since the other databases displayed effort by phase only, the NCCA Raw Database used SEL 
effort data by phase versus effort by WBS task to remain consistent.  However, the SEL 
Database did not break out the aforementioned support (direct and indirect) by phase, but 
instead reported total support.  As such, NCCA distributed the support across the phases using 
the following allocation formula:17 
 







+= Support*

E
E

EE
Total

i
iiADJ  

                                                 
17NCCA assumed that support would be present in both the System and Acceptance Test Phases.  Therefore, the effort for these 
phases was included to arrive at the proper allocation of effort to all phases (i.e., this distribution was performed before removing the 
System and Acceptance Tests from the NCCA Database). 
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where EiADJ is the effort in phase i, including support; Ei is the effort in phase i, excluding  
support; ETotal is the sum of the individual phased efforts; and support is the total support  
effort.  Therefore, 
 

Total EiADJ = ETotal + Support 
 
The strengths of the SEL Database are as follows: 
 
1) All data represented the same domain, and all programs fell within two categories:  attitude 

ground-support or telemetry-simulation software.  This created a better data set to analyze 
for changes in the development processes. 

 
2) The SEL Database's productivity reflected modern processes and constant process 

improvement. 
 
The weaknesses of the SEL Database are as follows:  
 
1) Software developed for NASA may not have the same level of documentation requirements 

as software developed in DoD.  Software developers at NASA are encouraged, but not 
required, to develop software consistent with the guidelines set forth in reference [11], which 
closely resemble DoD-STD-2167A. 

 
2) All of the software was support software. 
 
3) Only a few of the programs counted logical SLOC.  The rest counted physical SLOC. 
 
Still, the SEL data was of sufficient quality to be used for top-level normalized productivity 
factors and regressions. 
 
3.4.5  NAVY INTERNAL DATA 
 
Several sources of contractor-specific data, internal to the Navy, were included in the NCCA 
Raw Database.  These data points were gathered by NCCA analysts in support of past ICEs 
and other analyses.  These data points represent software developed from the 1980s to mid-
1990s.  Due to the business sensitive nature of the data, the source and contractor names are 
not available in this document.  This section provides an overview of the business sensitive 
sources.  Refer to Appendix B for specific details. 
 
The NCCA Raw Database included a total of 127 data points, 50 at the program-level and 77 at 
the CSCI-level, from Navy internal data sources.  The data covered a broad spectrum of Navy 
systems, including sonars, combat systems, trainers, electronic warfare, and C3.  Programming 
languages included FORTRAN, Ada, C, Pascal, and Assembly.  The CSCI sizes ranged from 
3.7 to 342 KSLOC, and the program sizes ranged from 2.6 to 1,421 KSLOC.  In most cases, the 
quality of the data points was not very high.  Several programs did not indicate the hours per 
man-month or phases of effort in the total effort expended.  Further, the scope was non-
standard (i.e., did not reflect SDR through FQT) and several programs used physical SLOC 
counts.  Yet, there was a sufficient amount of high quality data available after normalization to 
be used for normalized regression and productivity factor analysis. 
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3.4.6  SILVER SASET VALIDATION DATABASE 
 
This database came from an undated SASET validation study.  There was no published report 
associated with this database; however, a presentation of the results of the study was given in 
1990.  The Silver Database, in its raw form, contained 42 CSCIs from 23 programs.  The 
programs were developed from the 1970s to the mid-1980s.  CSCI sizes ranged from 0.6 to 131 
KSLOC, and program sizes ranged from 22 to 469 KSLOC.  No information was provided about 
the programming languages used other than the top-level percentage of HOL and Assembly 
language. 
 
Many of the data points were identical to those in the MITRE Non-Ada Database.  To avoid 
duplication, NCCA screened each data point in the Silver Database to determine if it was 
already included in the MITRE Non-Ada Database.  However, even if a duplicate was found in 
the Silver Database, additional information was often discovered.  The Silver Database included 
additional fields such as program and/or CSCI name, CDR date, date of Initial Operational 
Capability (IOC).  In one case, the MITRE Non-Ada Database had only program-level data while 
its match in the Silver Database decomposed the program by CSCI.  The inclusion of the more 
granular CSCI-level data should enable the analyst to make stronger analogies. 
 
For screening purposes, NCCA identified the following key fields to compare: 
 
1)  Total SLOC 
2)  Effort 
3)  CSCI name with CSCI initials 
 
Appendix B contains the 11 data points from the Silver Database which were duplicated in the 
MITRE Non-Ada Database. 
 
The Silver Database defined SLOC as DSLOC, but no formal definition was provided for SLOC.  
Therefore, except for the programs matched to the MITRE Non-Ada Database, a “?” appears in 
Field #22 (Count) of the NCCA Raw Database for those programs in the Silver Database. 
 
SLOC were decomposed by code condition (i.e., new, modified, and rehosted) and language 
(i.e., HOL and Assembly).  The specific name of the HOL was not provided; therefore, Field #10 
(Lang1) in the NCCA Raw Database listed “HOL” as the programming language.  This excluded 
this data from any later analyses that required the name of a specific HOL as an input. 
 
Unless the program matched a data point from the MITRE Non-Ada Database, the hours per 
man-month were also unknown.  In the NCCA Raw Database, this means that Field #25 
(MM.eq.152) contained a question mark for those data points. 
 
Since the type of counting convention, scope of effort, programming language and hours per 
man-month were all unknown, unless the same data points were found in the MITRE Non-Ada 
Database, this database is useful only to develop non-normalized, top-level productivity factors. 
 
 
 
 



Section 3 - Software Database 
 

3 - 25   

3.4.7  REVIC RECALIBRATION DATABASE 
 
The REVIC Recalibration Database contained program and CSCI-level data that was collected 
to recalibrate the REVIC effort and schedule equations.  The study [12] relied on more than five 
different sources of data including the SMC Database, Front Range Ada Working Group, Wright 
Patterson Air Force Base, IITRI, and others (such as NASA, Boehm, and the Jet Propulsion 
Lab).  
 
A total of 114 data points were compiled; 41 of these came from the SMC Database.  The 
REVIC Database provided some program names, while the SMC Database did not.  NCCA 
cross-referenced the REVIC Database with the SMC Database by comparing size, language, 
application, effort, and schedule.  This was similar to the methods used to compare the Silver 
Database with the MITRE Non-Ada Database.  Appendix B contains the REVIC data points 
duplicated in the SMC Database.  The overall quality of data from this database was mixed.  
The 41 data points originating from the SMC Database were of a higher quality than the 
remaining data points and can be utilized to generate normalized tools.  However, the remaining 
data is useful only for a top-level non-normalized analysis. 
 
3.4.8  IITRI DATABASE 
 
The IITRI Database [13] consisted of eight data points which also appear in the REVIC 
Recalibration Database described above.  However, the IITRI Database provided additional 
information that was added to the NCCA Raw Database.  IITRI collected data primarily to 
determine how several software cost estimating models compare when estimating Ada 
development programs.  The report also specifically tracked the amount of Ada experience each 
programmer possessed.  This experience ranged from zero to five years.  However, it did not 
track the quantity of programs that the programmer had developed in Ada. 
  
Some of the data points were not 100 percent Ada (i.e., Assembly language was also used).   
CSCI sizes ranged from 18.3 to 480 KSLOC.  Several types of software were represented, 
including C3, avionics, and Ada support tools.  One data point reflected commercial 
development standards, while the rest were developed based on various DoD standards, 
including DoD-STD-2167A. 
 
It appears that IITRI defined these data points as program-level, yet the REVIC study showed 
them as CSCIs.  Schedule information did not appear in the data summary tables in the IITRI 
report; however, page 3-16 of the report provided actual schedules.  IITRI made a point to state 
the scope of effort (SDR through FQT), but never mentioned whether the schedule was also 
specific to these review dates.  NCCA classified these data points as CSCIs, following the 
REVIC Database’s format.  If these points turn out to be programs and the schedule’s phasing 
is comparable to the effort phasing, an additional eight data points can be added to the 
normalized software schedule estimating database.  (See Section 8 - Schedule Analysis for a 
discussion of the schedule estimating effort.) 
 
The IITRI data should be used with caution for the following reasons: 
 
1) It is not precisely known if these are programs, CSCIs, or a mixture of the two. 
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2) Data point #5 was commented physical SLOC.  IITRI spoke to the software developer and 
decreased the SLOC count by 20 percent to convert from physical SLOC to logical SLOC.  
Reference [13] did not state whether the count shown was the adjusted number or the raw 
number.  In any case, NCCA removed the 20 percent discount factor and classified this 
point as “CP” in Field #22 (Count). 

 
3) Data points #7 and #8 showed SLOC without indicating if they were new.  The other six 

points were labeled “New Ada” or “New Assembly.”  The lack of “New” in front of data points 
#7 and #8 may indicate these were raw totals.  However, since these data points were 
treated as 100 percent new SLOC in the REVIC Database, NCCA treated them as 100 
percent new SLOC. 

 
Overall, half of this data was useful only to develop top-level non-normalized factors. 
 
3.5  RESULTS 
 
As a result of the extraction of data points from the aforementioned databases, the NCCA Raw 
Database contains a total of 457 records.  Each record contains 73 attribute fields, although not 
all fields are completed for each record.  These fields describe various attributes of the program, 
including size, effort, schedule, language, scope, process, and many others.  The database 
contains many different DoD and NASA software development programs at both the program- 
and CSCI-level.  Not all of the data is of the quality NCCA requires.  However, there are enough 
well-defined data points for the analyst to perform credible software cost analyses.  Table 3-2 
presents top-level comparisons of the program- and CSCI-level data: 
 

Characteristics Program-Level CSCI-Level 
Number of Data Points 151 306 
Number of Ada Data Points 42 134 
Size Range (KSLOC) 2.3 - 1,800.0 0.4 - 595.1 
Effort Range (MM) 9 - 26,500.0 1.7 - 6,593.0 
Amount of Reused (%)       0 - 100 0 - 96 

Table 3-2:  NCCA Raw Database Summary 
 
Table 3-3 provides a comparison of the source databases by program and CSCI.  Note the 
smaller number of data points for the program-level data.  The program-level data points were 
extracted primarily from NASA and Navy Internal sources, while the CSCI-level data was 
extracted primarily from Navy Internal, REVIC Recalibration and SMC source databases. 
 
The programs represented by these data points were written in several different programming 
languages.  With the advent of fewer government mandates, programming in languages other 
than Ada will increase.  For example, commercial vendors currently rely heavily on the C 
programming languages.  The NCCA Raw Database does not contain any programs which 
used a 4GL.18  Table 3-4 compares the primary programming languages by program and CSCI.  
Note that there were some data points where the programming language was unknown. 
 
The NCCA Raw Database covers diverse mission areas.  However, the MIS area is not well 
represented.  This is the most challenging area to collect data, as it is more sensitive to rapid 

                                                 
18 Refer to the NCCA Issue Paper “Fourth Generation Languages” for a discussion of this topic. 
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changes in the commercial sector.  The problem is compounded by DoD's increasing emphasis 
on utilizing COTS software.19  Table 3-5 compares the data by mission area. 
 

 Number of Data Points 
Source Database Program CSCI Total 

1.  MITRE Non-Ada 21 51 72 
2.  MITRE Ada 17 13 30 
3.  SMC 17 62 79 
4.  NASA SEL 33 4 37 
5.  Navy Internal 50 77 127 
6.  Silver SASET Validation 12 35 47 
7.  REVIC Recalibration 1 56 57 
8.  IITRI Report 0 8 8 

Total 151 306 457 
Table 3-3:  NCCA Raw Database Data Sources 

 
Primary Language Program-Level CSCI-Level 
Ada 42 134 
Assembly 19 36 
Atlas 0 3 
C 4 20 
CMS-2 12 21 
COBOL 3 7 
FORTRAN 48 20 
JOVIAL 8 33 
Other 12 31 
Unknown 3 1 

Table 3-4:  Summary of the NCCA Raw Database by Programming Language  
 

Mission Area Program-Level CSCI-Level 
ASW 4 55 
C3 47 114 
EW 6 0 
MINE 3 0 
MIS 7 16 
MISSILE 2 7 
RADAR 14 32 
SIM 42 12 
SONAR 7 1 
TORP 2 0 
UUV 2 2 
UNKNOWN 15 67 

Table 3-5:  Summary of the NCCA Raw Database by Mission Area 
 
Four platform types are represented in the database.  The majority of the systems are ground 
systems; however, there are a substantial number of programs and CSCIs where the platform 
type is unknown.  Platform types are summarized in Table 3-6. 
 

 Number of Data Points 
Platform Program CSCI 

Air 21 17 
Ground 78 118 
Ship 29 69 
Unmanned Space 0 11 
Unknown 23 91 

Table 3-6:  Summary of the NCCA Raw Database by Platform 
 

                                                 
19Refer to the NCCA Issue Paper “Commercial-Off-The-Shelf Integration” for a discussion of this topic. 
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While the results seem impressive, users are cautioned that the tables are based on the non-
normalized data set (all 457 points).  Sections 4 and 5 - Effort Analysis:  Significant Drivers 
and Normalized Regressions, thoroughly explain the process of filtering the data points to 
obtain a normalized, standardized set of data points.  Further subdivision of the NCCA Raw 
Database may reduce the number of data points within a specific mission area to zero. 

 
3.6  CONCLUSIONS 
 
NCCA invested extensive effort to compile all readily available data into one centralized 
database.  The NCCA Raw Database represents a strong foundation upon which to build further 
capability and robustness.  Overall, the database can be used to produce top-level non-
normalized productivity factors, normalized productivity factors or effort regressions, and 
schedule estimators.  With the future addition of high quality data, NCCA plans to use the 
database to track productivity improvements over time, develop schedule estimates at the 
CSCI-level, investigate the effect of development processes and standards on productivity, and 
investigate the productivity of 4GLs. 
 
Finally, the authors would like to point out the continued scarcity of historical software data both 
in the Navy and throughout the government.  While the 457 data points available in the NCCA 
Raw Database sound impressive, the data reflects a 25-year period of data collection.  In that 
time, thousands of programs have been developed with perhaps tens of thousands of 
subcomponents.  DoD has not performed well in collecting software data. 
 
There is no formal mechanism in place to collect this data in a standardized, well-defined 
manner; therefore, cost analysts should make every attempt to obtain high quality data and 
devise better metrics to measure software products and processes.  There are many factors 
and reasons why a software program can go awry and fail.  Poor schedules20 and improper 
budgets should not be among them. 

 
3.7  FUTURE EFFORTS 
 
It is clear that more can be done to improve the historical database.  While compiling the current 
version of the NCCA Raw Database, several potential improvements and enhancements were 
identified: 
 
1) Maintenance:  The current database covers only software development.  Software 

maintenance, which represents 50 to 70 percent of software life cycle cost, is not covered.  
The SMC Database contains additional fields to collect software maintenance information, 
but, as of Version 2.1, only two records in the database contain maintenance information.  
NCCA is currently working with NSWC, Dahlgren to remedy this situation by funding the 
collection and analysis of Navy software maintenance data.21 

 
2) 4GL: The current database does not contain any programs written in a 4GL.  The MIS area 

will be the first to see the increased adoption of 4GLs.  Further research into the literature is 
                                                 
20 Refer to the NCCA Issue Paper “The Impacts of Schedule Slippage/Compression on the Software Development Effort” for a 
discussion of this topic. 
21 Refer to the Technomics study, titled “Software Life Cycle Cost Process Model,” dated April 1995. 
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needed to determine what is the best and easiest metric to measure 4GL programs.  SLOC 
may no longer be sufficient because much of the code is generated automatically and in a 
non-sequential manner. 

 
3) Effort by Phase:  Most of the data points contain total effort only.  However, some of them 

provide effort by major phase (e.g., design, code, unit test, integration, and system test).  
Still, more effort should be devoted to collecting the effort by phase, primarily because it is 
hypothesized that some phases are more sensitive to the SLOC count than others.  Detailed 
Design and Code and Unit Test are two such phases.  Regressions based only on these two 
phases may result in better statistics.  Other phases may be appropriately estimated by 
utilizing a level-of-effort approach.  Additionally, not all estimates require the same scope of 
phasing.  If the effort is decomposed by phase, then general factors can be developed to 
either add or delete effort from the total. 

 
4) Effort by WBS:  The only databases to provide effort information by WBS were the SMC 

and SEL Databases.  The other databases treated the WBS as a normalizing factor and 
tried to ensure that the total effort information included common WBS tasks.  See reference 
[5] for more details.  Collecting effort by specific WBS greatly enhances the ability to 
standardize effort data.22  It also allows the analyst to generate standard factors by WBS.  
These are useful in addressing the impact of process and acquisition changes on cost, 
which are of prime interest in today’s acquisition reform environment.  For instance, if data 
requirement costs are reduced by 50 percent, how much savings will there be to the total 
software development cost? 

 
5) Process:  Most of the fields in the NCCA Raw Database describe the software product, but 

fail to describe the process that created the software.  If a set of objective attributes can be 
found to define what process is used to generate the software product, then stronger 
analogies and tighter regressions may result.  One attribute already captured is the 
development process (i.e., waterfall, incremental, spiral, etc.).  This, however, is only the tip 
of the iceberg.  Attributes like those set forth in the Capability Maturity Model23 should be 
explored.  Other software models attempt to capture these attributes, most, however, are 
too subjective. 

 
6) Function Points:  Another way to estimate the overall size of the software product is to 

count function points.  Function point enthusiasts claim it is easier for a software engineer to 
estimate how much functionality his or her software product will have than to develop an 
estimate of the SLOC that need to be produced.  In the past, it was claimed that weapon 
systems were not good candidates for function point counts.  Capers Jones attempted to 
address this shortfall through the creation of feature points (which take into account the 
number of algorithms in a program).  Today not only has the function point counting practice 
matured, but modern military systems are looking more and more like sophisticated MIS 
systems and less and less like black boxes.  This may enable greater application of function 
points in estimating weapon systems. 

 
7) Tools:  Great advances have been made in software development tools over the past few 

years.  What effect do modern tools like Visual Basic or PowerBuilder have on the overall 

                                                 
22 Refer to the NCCA Issue Paper “The Relationship Between MIL-STD-881B and DoD-STD-2167A” for a discussion of this topic. 
23 Refer to the NCCA Issue Paper “Software Engineering Institute Capability Maturity Model” for a discussion of this topic. 
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productivity of software developers?  How can they be measured?  These answers may 
unlock the door to many other productivity issues. 

 
8) Effort Associated with Deleted Code:  As discussed previously, many companies do not 

track the amount of deleted code.  The effort to understand and remove faulty code may be 
more difficult than currently assumed.  By tracking the effort associated with deleted code, 
regressions and productivity metrics may experience great improvements. 

 
9) Effort by Type:  Similarly, if companies captured not only the effort and size associated with 

the delivered operational code but also the effort associated with non-delivered code, 
improvements in cost estimating tools may result. 



 

 

 
 

EFFORT ANALYSIS: 
SIGNIFICANT DRIVERS 

 
 

4.1  INTRODUCTION 
 
This section of the handbook documents the methodology and procedures used to determine 
which software attributes drive productivity.  Identification of the significant productivity drivers 
aided in the development of data normalization procedures as well as providing guidelines for 
the development of effort estimating tools (Section 5 - Normalized Regressions). 
 
The analysis was performed on four levels; each level tested a different set of attributes.  NCCA 
chose to limit the analysis to objective metrics since 1) the analysis was geared toward the 
novice software cost estimator and 2) subjective metrics would increase the uncertainty. 
 
This portion of the handbook is organized into the following sections: 
 

• Raw Data 
• Methodology and Results 
• Conclusions 
• Weaknesses 
• Future Efforts 

 
4.2  RAW DATA 
 
All data used in this section came from the NCCA Raw Database (see Section 3 - Software 
Database).  However, analysis of the NCCA Raw Database in its non-normalized state does not 
provide meaningful results.  Many of the records in the database used different units of measure 
for items like size, effort, and schedule.  To rectify this, NCCA decided to compile a normalized 
database.  There are two possible approaches for constructing the normalized database. 
 
The first approach is to keep all data points, but adjust them as necessary to obtain consistent 
units of measure.  If the NCCA normalized database required each data point to include all 
phases of the software development effort and a data point did not include the effort for the 
Software Requirements Analysis Phase, then the data point would have to be adjusted to 
include the Software Requirements Analysis Phase.  The question then becomes, “What factors 
should be used to make these adjustments?”  The answer can vary tremendously and may be 
based more on engineering judgment than on empirical study.  Using this first approach may 
introduce an additional layer of uncertainty into an already highly volatile database. 
 
The second approach is to filter out any data points that do not meet the specified criteria (e.g., 
exclude all Assembly data points, include only ship programs, etc.).  The main advantage of this 
approach is that no additional uncertainty is introduced into the analysis.  The main 

4 
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disadvantage to this approach is the reduction in the amount of data.  In other words, the more 
specific the filter, the fewer data points that remain at the end of the normalization process. 
 
To minimize uncertainty, NCCA chose to normalize the database by filtering out those data 
points which did not satisfy the specified criteria (i.e., no factors were used to make adjustments 
to the data points).  The remainder of this section of the handbook focuses on determining 
significant productivity drivers.  The results of the analysis will determine how the data must be 
filtered to constitute a “normalized” database. 

 
4.3  METHODOLOGY AND RESULTS 
 
NCCA conducted analysis on four levels.  For each level of analysis, five-steps were followed to 
determine which attributes drive productivity.  First, NCCA determined which attributes should 
be tested as possible productivity drivers.  Second, the relevant data sets were filtered from the 
NCCA Raw Database.  NCCA created eight data sets for the Level One analysis, three data 
sets for the Level Two analysis, 17 data sets for the Level Three analysis, and 17 data sets for 
the Level Four analysis.  Third, productivity (Hours/ESLOC) was calculated for each data point.  
Fourth, average productivity, standard deviation, and coefficient of variation (CV) were 
calculated for each set of data.  Fifth, statistical tests were conducted on the sets of data to 
determine whether the data sets were statistically different.  See Appendix C for definitions of 
the statistical measures. 
 
4.3.1  LEVEL ONE 
 
Level One analyses were top-level and conducted to determine whether a) mission (MIS versus 
weapon system); b) counting convention (physical versus logical); c) language (Assembly 
versus HOL); and/or d) phasing (SDR through FQT versus other life cycle phases) were 
significant productivity drivers. 
 
In this section, the methodology and the results for each attribute tested for the Level One 
analysis will be discussed.  The results from Level One are in Appendix C.  Throughout this 
section, tables (such as Table 4-1) demonstrate exactly how the data was filtered from the 
NCCA Raw Database.  The italicized words are the field names from the NCCA Raw Database 
used for the filters.  The non-italicized words are the criteria utilized to filter the database.  
Additionally, figures (such as Figure 4-1) show the resulting data sets after the filtering criterion 
was applied (the double boxes depict the “normalized” database filters). 

 
4.3.1.1 MISSION 
 
METHODOLOGY 
 
The operational requirements of MIS and weapon systems are quite different.  Weapon systems 
typically require real-time processing.  In addition, failure of a weapon system could result in 
failure of the mission or in loss of life.  Thus, the reliability requirements for weapon systems are 
very demanding.  In contrast, MIS are not typically real-time, mission critical systems, and 
failure of the system does not result in loss of life.  Thus, the reliability requirements for a MIS 
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are much less stringent.  Due to these differences, it was expected that the productivity to 
develop weapon system software would be lower than that to develop MIS software. 
 
To determine whether mission drives productivity, two data sets (weapon system and MIS) were 
filtered from the NCCA Raw Database, as Figure 4-1 illustrates.  The 112 data points deleted 
did not meet the filtering criteria (i.e., mission was not known) or they were deemed outliers, as 
discussed below. 
 

   
   

Deleted 
112 

    
  NCCA Raw Database 

457   
MIS 
17 

    
   
   

Weapon Sys 
328 

Figure 4-1:  Mission Data Sets 
 
The original MIS data set consisted of 23 MIS programs (or data points) from the NCCA Raw 
Database with known code condition.24  The following six data points were then deleted from the 
data set resulting in a final MIS data set of 17 data points:  NCCA-39, NCCA-43, NCCA-55, 
NCCA-74, NCCA-92, and NCCA-157.  These points were deleted due to the possibility that they 
were duplicates and reflected effort that was allocated to the CSCI-level. 
 
Table 4-1 shows the filters used to obtain the MIS data set from the NCCA Raw Database.  The 
weapon system data set (328 data points) consists of all weapon system programs from the 
NCCA Raw Database with known code condition.  
 

MIS Weapon System 
New ≠ blank  

Mission = MIS 
(Eliminated 6 outliers) 

New ≠ blank25 
Mission ≠ MIS or blank26 

Table 4-1:  MIS and Weapon System Data Sets 
 
The productivity expressed in Hours per equivalent new SLOC (ESLOC), was then calculated 
for each data point.  The measure, ESLOC, is a means to normalize SLOC counts to reflect the 
fact that new code requires greater development effort than not new code.  A popular method to 
determine ESLOC is discussed in reference [5].  The method is based on engineering judgment 
and an assumed distribution of effort between design, code, and test.  The term Adaptation 
Adjustment Factor (AAF) describes the overall weight given to the adapted (i.e., not new) 
SLOC. 
 

AAF = 0.4 DM + 0.3 CM + 0.3 IM 
 

                                                 
24The code condition must be known to perform the ESLOC calculation. 
25This field must be filtered manually.  There is one program with zero percent new code.  LOTUS treats this data point as if there 
was a blank in the field and eliminates it. 
26All data points with a blank Mission Field were also eliminated since they could be MIS programs. 
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Where DM (% design modified), CM (% code modified), and IM (% of integration and test 
required) are percentages of the adapted software’s code that needs to be redesigned, recoded 
and retested.  Thus, if DM equals 100 percent, the adapted SLOC undergoes 100 percent 
redesign.  If DM equals zero, the adapted SLOC undergoes no redesign.  After determining 
AAF, ESLOC are calculated by the following equation: 
 

ESLOC = New SLOC + (AAF * Adapted SLOC) 
 
There are three problems with this methodology: 
 
1) DM, CM, and IM must be subjectively estimated by an engineer at the start of the project, 

presumably when little information is available. 
 
2) With the advent of Best Commercial Practices, many standards and requirements are being 

relaxed (which might decrease the amount of documentation and testing required).  This 
would impact the phasing distribution assumed in the AAF equation above. 

 
3) There is no uncertainty range around any of the assumed values (i.e., around the 

coefficients or around DM, CM, and IM). 
 
These problems make it difficult to assess the overall variance of the effort estimate and 
therefore, to budget to the true most likely estimate. 
 
Due to the problems associated with the subjectivity of this methodology, NCCA adopted an 
alternative approach.  The NCCA Raw Database contains a mixture of different kinds of 
development.  They include: 
 
1) 100 percent new program developments 
2) Programs with various levels of reused code (both external and internal) 
 
Based on the composition of the NCCA Raw Database, NCCA’s alternative approach calculates 
ESLOC empirically.  NCCA used an Efactor27 (Equivalent Code Conversion Factor) to convert 
reused SLOC into ESLOC.  The Efactor weights reused SLOC as a percentage of new SLOC.  
The term ESLOC is defined as follows: 
 

ESLOC = New SLOC + (Efactor * Reused SLOC) 
 
Efactors are iteratively derived using a simple spreadsheet model.  The model performs a 
"tradeoff analysis."  During the analysis, the model assigns the Efactor a value between zero 
and one, and then solves for the X variable, ESLOC.  After the productivity, expressed in 
ESLOC, is calculated, the CV is computed.  (See Appendix C for further details.)  The Efactor is 
then changed and the productivity and CV are re-calculated.  This continues until the 
productivity and CV corresponding to each Efactor value, in increments of 0.01 between zero 
and one, have been computed.  The results are then analyzed to determine the value of the 
Efactor that produced the productivity with the lowest CV. 
 

                                                 
27Note:  0 ≤ Efactor ≤ 1 
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Table 4-2 summarizes the strengths and weaknesses of the two different approaches to 
estimating ESLOC. 
 

ESLOC Method Strengths Weaknesses 
Engineering Judgement- 
Typical Approach 

1)  Based on a technical assessment of 
effort to be performed 
2)  Estimate would be company specific 

1)  Subjective assessment 
2)  Information required to make assessment may 
not be available early in the program's development 
3)  Assumed distribution of effort 
4)  No uncertainty around estimate (%redesign, 
%recode, and %retest are an assumed distribution) 

Empirical - NCCA Approach 1)  Objective approach 
2)  Approach can be applied early in 
development cycle 
3)  Reflects industry averages (if industry 
average vice contractor-specific data is 
used) 
4)  Uncertainty around estimate captures 
Efactor uncertainty 

1)  No specific uncertainty around Efactor 
2)  Not contractor-specific unless underlying data is 
3)  Dependent upon mapping of reused SLOC into 
correct fields (Two Efactor equation only) 

Table 4-2:  ESLOC Methods (Strengths and Weaknesses) 
 
Productivity was calculated for each data point as follows: 
 

Productivity = 
ESLOC

)MM/Hours(*MM  

 
where:  MM is equal to the number of man-months of effort expended to develop the software 
program; Hours/MM is equal to the number of hours in a man-month; and ESLOC is the number 
of equivalent new SLOC. 
 
Most of the source databases tracked effort in man-months.  For this level, a 152-hour man-
month was assumed for those data points that did not provide the hours per man-month rate. 
 
The average productivity, standard deviation, and CV were then calculated for each data set.  In 
addition, NCCA performed statistical tests on the data to determine which metrics drive 
productivity.  The t-test and the Mann-Whitney U test were used to determine whether the 
productivities of the two data sets were statistically different.  For both tests, NCCA assumed a 
two-tailed test and a confidence level of 95 percent (α = 0.05). 
 
The t-test was used to test the hypothesis that the two data sets are from populations with the 
same mean.  The test assumes two independent, normal populations with unknown means and 
unknown but equal variances (s1

2 = s2
2 = s3

2).  See Appendix C for details on the t-test. 
 
The Mann-Whitney U test is a nonparametric alternative to the t-test appropriate when sample 
sizes are small.28  It is a ranking test which assumes that if the two data sets are actually drawn 
from the same population, then the observations will be dispersed throughout (i.e., one data set 
is not concentrated among the smaller values, while the other is concentrated among the larger 
values).  See Appendix C, and reference [14] for details on the Mann-Whitney U Test.  The 
results from the Mann-Whitney U Test are also contained in Appendix C.  This methodology 
was duplicated for all remaining levels of analyses which follow. 
 

                                                 
28NCCA utilized the Mann-Whitney U test when any data set consisted of 20 or fewer data points. 
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RESULTS 
 
The software development productivity for MIS programs (0.824 Hours/ESLOC) was statistically 
higher than that for weapon systems (1.781 Hours/ESLOC).  Therefore, since the mission (or 
domain) of the system is a significant productivity driver, MIS programs should not be combined 
with weapon system programs.  Table 4-3 shows the detailed results and corresponding 
statistics.  
 

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test  Equal? 
MIS  
Weapon Systems  

0 
0.46 

17 
328 

0.824 
1.781 

72% 
128% 

 
Mann-Whitney 

 
No 

Table 4-3:  Level One Statistical Results (Mission) 

 
4.3.1.2  COUNTING CONVENTION 
 
METHODOLOGY 
 
There are many ways to count SLOC in a program, and each produces a different result as 
discussed in Section 3 - Software Database.  Each carriage return is counted as a line when 
counting physical SLOC.  When counting logical SLOC, each complete command is counted as 
a line, regardless of how many physical lines the command takes.  Logical SLOC are typically 
more reflective of the true effort associated with a function, because the count is not influenced 
heavily by coding style.  Due to these differences, it was expected that software programs sized 
by a physical code count would appear to be more productive than programs sized by a logical 
code count. 
 
To determine whether counting convention drives productivity, two data sets (logical and 
physical) were developed.  Since mission was proven to be a productivity driver and this 
handbook is concerned with weapon systems, MIS programs were excluded from the remaining 
data sets.  The two data sets developed for this test were filtered from the weapon system data 
set, as demonstrated in Figure 4-2. 
 

     
   

Deleted 
112   

Deleted 
81 

       
    NCCA Raw Database 

457   
MIS 
17   

Physical 
18 

       
      
   

Weapon Sys 
328    

       
       
      
      

Logical 
229 

Figure 4-2:  Counting Convention Data Set 
 
The physical data set consisted of weapon system programs with known code condition that 
were sized by a physical code counting convention.  The logical data set consisted of weapon 
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system programs with known code condition that were sized by a logical code counting 
convention.  See Table 4-4 below.  
 

Physical Logical 
Count = P 

Mission ≠ MIS or blank 
New ≠ blank 

Count = L 
Mission ≠ MIS or blank 

New ≠ blank29  
Table 4-4:  Physical and Logical Data Sets 

 
RESULTS 
 
The software development productivity for programs sized using a physical code count (0.735 
Hours/ESLOC) was statistically higher than that for programs sized using a logical code count 
(1.739 Hours/ESLOC).  Therefore, counting convention is a productivity driver and should be 
considered when estimating productivity.  Table 4-5 shows the detailed results and 
corresponding statistics. 
 

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test  Equal? 
Physical  
Logical 

0 
0.53 

18 
229 

0.735 
1.739 

104% 
124% 

 
Mann-Whitney 

 
No 

Table 4-5:  Level One Statistical Results (Counting Convention) 

 
4.3.1.3  LANGUAGE 
 
METHODOLOGY 
 
Assembly is a second-generation language (2GL) and is one step above machine language.   
HOLs are third-generation languages (3GLs) and are closer to spoken language than 2GLs.  
HOLs were developed to make writing and understanding programs easier.  Additionally, 
programs that used significant amounts of Assembly probably did so because of severe 
constraints on memory or timing requirements.  This extra level of complexity is in contrast to 
other programs that did not have these constraints.  Based on this reasoning, it was expected 
that the productivity to develop code written in an HOL would be higher than that to develop 
code written in Assembly. 
 
To determine whether language level drives productivity, two data sets, which also reflect the 
results of the mission and counting convention productivity analyses previously discussed, were 
developed from the NCCA Raw Database.  Thus, the two data sets developed for this test were 
filtered from the logical data set, as demonstrated in Figure 4-3. 
 
The HOL data set consisted of weapon system programs with known code condition that were 
sized by a logical code count and written primarily in an HOL (greater than or equal to 70 
percent).  NCCA used HOL greater than 70 percent as the cutoff, based on recent programs 
that NCCA reviewed.  Sensitivity analyses were performed at 80 percent HOL and 90 percent 
HOL.  On the whole, the 80 percent filter produced comparable results to the 70 percent 
criterion, but with fewer data points.  The 90 percent HOL filter was so restrictive that, at the 
program-level, entire database sources were deleted.  Hence, to retain as many data points as 
possible, while still addressing the impacts of Assembly, NCCA chose 70 percent as the cutoff 
                                                 
29This field must be filtered manually.  There is one program with zero percent new code.  LOTUS treats this data point as if there 
was a blank in the field and eliminates it. 
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percentage.  This percentage actually makes the resulting differences smaller (i.e., if 100 
percent HOL programs had been used in the data set rather than greater than 70 percent HOL 
programs, the resulting differences would have been larger). 
 

         

   
Deleted 

112    
Deleted 

81    
           

        NCCA Raw Database 
457   

MIS 
17    

Physical 
18    

          
         

Deleted 
6 

   
Weapon Sys 

328        
          
          

Assembly 
38 

          

       
Logical 

229   HOL 
185 

           Figure 4-3:  Language Data Set 

 
The Assembly data set consisted of weapon system programs with known code condition that 
were written entirely in Assembly (zero percent HOL).  See Table 4-6 below.  Counting 
convention was not filtered for the Assembly data set because programs written in Assembly 
are always sized by a logical code counting convention. 
 

HOL Assembly 
HOL ≥ 0.7  
Count = L 

Mission ≠ MIS (or blank) 
New ≠ blank30 

HOL = 0  
Mission ≠ MIS or blank 

New ≠ blank 

Table 4-6:  HOL and Assembly Data Sets 

 
RESULTS 
 
The software development productivity for programs written in Assembly (3.990 Hours/ESLOC) 
was statistically lower than that for programs written in an HOL (1.860 Hours/ESLOC).  
Therefore, since language is a significant productivity driver, programs written in Assembly must 
be treated separately from programs written in an HOL.  See Table 4-7 for the detailed results 
and corresponding statistics. 
 

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test  Equal? 
Assembly  
HOL 

0.69 
0.04 

38 
185 

3.990 
1.860 

98% 
83% 

 
t-test 

 
No 

Table 4-7:  Level One Statistical Results (Language) 

                                                 
30This field must be filtered manually.  There is one program with zero percent new code.  LOTUS treats this data point as if there 
was a blank in the field and eliminates it. 
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4.3.1.4  PHASING 
 
METHODOLOGY 
 
Total effort is the accumulation of work performed over a specific period of time.  Depending on 
how the start and stop points are defined, a different accumulation of effort results.  DoD 2167A 
defines 11 phases of system development, including software development (see shaded area in 
Figure 4-4).  Assuming there is some software-related effort in each phase, a different amount 
of effort will result when particular phases are included or excluded. 
 

    SRR        SDR            SSR                PDR         CDR                     TRR        FQT        PCA

   SYSTEM  SYSTEM S O F T W A R E PRELIMINARY DETAILED CODING CSC CSCI SYSTEM TEST & PROD &
PHASES: RQTMTS   DESIGN RQTMTS DESIGN D E S I G N & CSC INTEG & TESTING INTEG & EVAL DEPLOY

      A N A L T E S T TEST TEST

SRR - System Requirements Review

SDR - System Design Review

SSR - Software Specification Review

PDR - Preliminary Design Review

CDR - Critical Design Review

TRR - Test Readiness Review

FQT - Formal Qualification Test

PCA - Physical Configuration Audit
 

Figure 4-4:  Phases of Software Development 
 
For example, consider software requirements.  Sometimes software requirements are captured 
in the System Requirements Analysis Phase rather than in the Software Requirements Analysis 
Phase.  Sometimes software requirements are performed by the government rather than by a 
contractor.  NCCA conducted a test to determine whether the software requirements effort was 
a significant portion of the total life cycle development. 
 
To determine whether phasing drives productivity, two data sets were developed from the 
NCCA Raw Database which reflect the results from the mission, counting convention and 
language productivity analyses previously discussed.  The two data sets developed for this test 
were filtered from the HOL data set, as demonstrated in Figure 4-5. 
 
The normalized data set consisted of weapon system programs with known code condition that 
were sized by a logical code count, written primarily in an HOL, normalized to a 152-hour man-
month, and included the effort associated with the phases of SDR through FQT (see the double 
boxes in Figure 4-5).  Once the explicit phases are specified, the hours per man-month rate 
associated with the phases must be known.  Therefore at this level, and henceforth NCCA 
excluded data points where the hours per man-month were unknown.  All other data points had 
effort normalized to 152 hours per man-month. 
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229      

Partially Normalized 
SSR through FQT 21 

            
         

HOL 
185   

            
Normalized 

SDR through FQT 124 
Figure 4-5:  Phasing Data Set 

 
The partially normalized data set consisted of weapon system programs with known code 
condition that were sized by a logical code count, written primarily in an HOL, normalized to a 
152-hour man-month, and included the phases of SSR through FQT.  See Table 4-8. 
 

Normalized Partially Normalized 
Mission ≠ MIS or blank 

Count = L 
HOL ≥ 0.7 

New ≠ blank31 
MM.eq.152 = Y 

REQ = 1 
PD = 1 
DD = 1 
CUT = 1 

CSC TST = 1 
CSCI TST = 1 

SIT = 0 
OTE = 0 

Mission ≠ MIS or blank 
Count = L 
HOL ≥ 0.7 

New ≠ blank 
MM.eq.152 = Y 

REQ = 0 
PD = 1 
DD = 1 
CUT = 1 

CSC TST =1 
CSCI TST = 1 

SIT = 0 
OTE = 0 

Table 4-8:  Normalized and Partially Normalized Data Sets 

 
RESULTS 
 
The software development productivity for partially normalized (SSR through FQT) programs 
(1.096 Hours/ESLOC) was statistically higher than that for normalized (SDR through FQT) 
programs (2.025 Hours/ESLOC).  This test proves that the Requirements Analysis Phase (from 
SDR through SSR) is a significant portion of the software development life cycle; therefore, 
phase-specific data sets should be utilized when estimating productivity.  Table 4-9 shows the 
detailed results and corresponding statistics. 
 

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test  Equal? 
Partially Normalized  
Normalized 

0 
0.03 

21 
124 

1.096 
2.025 

45% 
86% 

 
t-test 

 
No 

Table 4-9:  Level One Statistical Results (Phasing) 
 
Since mission, counting convention, language, and phasing were all proven to be significant 
productivity drivers, NCCA used data from the “normalized” data set (124 data points) for the 
next three levels of tests.  This means that all data utilized for the remainder of the analyses 

                                                 
31This field must be filtered manually.  There is one program with zero percent new code.  LOTUS treats this data point as if there 
was a blank in the field and eliminates it. 
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were weapon system programs with known code condition that were sized by a logical code 
count, written primarily in an HOL (greater than or equal to 70 percent), normalized to a 152-
hour man-month, and included the phases of SDR through FQT.  This was an attempt to 
eliminate as many known productivity drivers as possible so that any differences in productivity 
could be isolated to the remaining attributes being tested. 
 
4.3.2  LEVEL TWO 
 
The Level Two Analysis was conducted to determine whether productivity rates are significantly 
different for CSCI-level versus program-level versus one-CSCI program-level programs.  One-
CSCI programs are programs with only one CSCI.  
 
METHODOLOGY 
 
By definition SDR through FQT does not include System Requirements and System Integration.  
These tests were conducted to verify that fact in regards to the specific data points included in 
this analysis. 
 
Three data sets were developed to conduct the Level Two analysis.  The three data sets were 
filtered from the normalized data set (124 data points).  The program data set consisted of 27 
normalized program-level data points.  The CSCI data set consisted of 93 normalized CSCI-
level data points.  The one-CSCI data set consisted of 4 normalized, one-CSCI program-level 
data points.  Table 4-10 illustrates how the data was filtered from the NCCA Raw Database.32 
 

Program CSCI 1CSCI 
CSCI? = N 

CSCI Count ≠ 1 
CSCI? = Y CSCI? = N 

CSCI Count = 1 
Table 4-10:  Program, CSCI, and 1CSCI Data Sets 

 
RESULTS 
 
The software development productivity for CSCI-level development efforts was statistically 
equal to that for program-level development efforts.  The software development productivity for 
one-CSCI program-level development efforts was statistically equal to that for both CSCI-level 
and program-level development efforts.  However, the one-CSCI data set consisted of only four 
data points, which is probably too small a data set to be conclusive.  Table 4-11 provides a 
summary of all Level Two results and corresponding statistics.  These results can also be found 
in Appendix C. 
 

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test  Equal? 
Program  
CSCI 

0.07 
0 

27 
93 

1.726 
2.102 

68% 
88% 

 
t-test 

 
Yes 

1CSCI  
Program 

0.28 
0.07 

4 
27 

1.762 
1.726 

3% 
68% 

 
Mann-Whitney 

 
Yes 

1CSCI  
CSCI 

0.28 
0 

4 
93 

1.762 
2.102 

3% 
88% 

 
Mann-Whitney 

 
Yes 

Table 4-11:  Level Two Statistical Results 
 

                                                 
32 In addition to the attributes listed in Table 4-6, the attributes listed in Table 4-8 (Normalized Data set) were also used as filters to 
create the data sets used for this analysis. 
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4.3.3  LEVEL THREE (PROGRAM) AND LEVEL FOUR (CSCI) 
 
The Level Three analysis tested lower-level attributes for the program-level and the Level Four 
analysis tested lower-level attributes for the CSCI-level.  The results from both analyses are 
summarized in Appendix C.  Based on the Level Two results, Level Three and Four data sets 
could have been combined into one data set.  However, they were kept separate in order to 
support the regression analysis, discussed in Section 5 - Effort Analysis:  Normalized 
Regressions. 
 
NCCA performed tests on the Level Three and Level Four data sets to determine whether code 
condition, platform, mission area, software class, status, mode, language, or size drives 
productivity for the program- and CSCI-levels, respectively. 
 
METHODOLOGY 
 
The following discusses the rationale behind testing each attribute: 
 
1) Code Condition:  A completely new program or CSCI should be inherently more difficult to 

develop than its complement because there is no completed product, not even designs or 
algorithms, to reuse.  On the other hand, a program or CSCI that is not hundred percent 
new should be inherently simpler to develop because there exists some software product 
(i.e. document or source code) to reuse.  Therefore, developing a line of reused code 
(modified, rehosted, or verbatim) should be more productive than developing a line of new 
code.  One hundred percent new data points versus not hundred percent new data points 
were tested to verify this. 

 
2) Platform:  Air versus non-air data points and ground versus ship data points were tested to 

determine whether platform type drives productivity.  Because air systems have more 
physical constraints than non-air systems, the productivity to develop software for air 
systems may be significantly lower.  Ship versus ground systems were tested to ensure that 
any differences found between air and non-air systems were not due to differences in non-
air systems (i.e., differences between ship and ground systems).  Additionally, because ship 
systems have more physical constraints than ground systems, the software development 
productivity for ship systems may be significantly lower. 

 
3) Mission Area:  C3 software is the component of weapon system software that 

communicates, assimilates, coordinates, analyzes, interprets information, and provides 
decision support for military commanders.  It provides instantaneous situation assessment, 
allowing for advantageous, timely positioning and decision making [15].  Because C3 
systems are more software dependent, than non-C3 systems, their software development 
productivity may be lower. 

 
4) Software Class:  System software is designed for a specific software system, or family of 

software systems, to facilitate its development, operation, and maintenance [15].  
Application software is specifically developed for the functional use of a computer system.  
Examples are battle management, weapons control, and database management software 
[15].  Due to these differences, the development productivity for system software may be 
significantly lower than for application software. 
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5) Software Status:  Operational software is embedded in the system and is critical for 
mission accomplishment, while non-operational software is typically simulation or support 
code used to generate and test the operational software.  Operational code was defined by 
reference [16] as the code delivered to the customer for end use.  Non-operational software, 
which is typically not delivered, does not have to undergo the same level of rigor or 
documentation as operational software.  This was also the case in some programs that 
reference [5] surveyed.  Traditionally, code counting conventions like DSI included only 
delivered SLOC.  If non-delivered SLOC (like test drivers) are written with the same level of 
care as the delivered software, references [5], [16], and [17] recommend they be counted as 
well. 

 
For some programs NCCA reviewed within the source database, there was almost as much 
non-operational code as operational.  None of the source databases explicitly tracked the 
effort associated with operational versus non-operational code.  If the programs contained 
both types of code, but only the operational code was counted, then the effort associated 
with developing the non-operational code would be assigned to the operational code, thus 
increasing the overall cost per line of code for the entire program.  Also, if the historical 
programs contained a mix of operational and non-operational code that was significantly 
different from today's mix, then inaccurate results will be obtained.  Software status was 
tested to determine if these differences do in fact affect productivity. 

 
6) Software Mode:  This attribute is based on the original COCOMO model definition (see 

reference [5]) and attempts to account for the difficulties encountered when the software is 
required to adhere to strict system requirements.  Embedded mode software is 
characterized by tight constraints and is usually forced to comply with the specification of the 
system.  Therefore, changing the requirements of the system in order to solve software 
problems is difficult.  With the advent of cheaper memory and faster processors, there is 
room in today’s software to relax the constraints on software.  However, there are some 
programs that will continue to push the performance envelope.  Based on this rationale, the 
development productivity for embedded mode software may be lower than for semi-
detached or organic mode software. 

 
7) Language:  In the past, DoD had mandated the use of Ada to standardize software 

development.  DoD anticipated that standardization would result in significant savings in 
personnel, training, software reuse, and tools [15].  Ada and non-Ada data sets were tested 
to determine whether these anticipated savings have actually been realized. 

 
8) Size:  Small versus large programs were tested to determine whether software size drives 

productivity.  In a large program, it is possible that the programmers become more 
productive as they learn more about the program and the programming language.  This may 
make larger programs more productive.  On the other hand, a small program may be simpler 
or easier to manage and, therefore, more productive.  Due to the uncertainty of how 
productivity is impacted by program size, the small and large program data sets were tested 
for significance. 

 
To determine whether code condition, platform, mission area, software class, status, mode, 
language or size are significant productivity drivers, 17 data sets were developed for both the 
Level Three and Level Four analyses.  Since one-CSCI programs were statistically equal to 
both CSCIs and programs, the four one-CSCI data points were added to both the program and 
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the CSCI data sets for analysis.  The 17 data sets used in the Level Three analysis were filtered 
from the program and one-CSCI data sets (31 data points), and the 17 data sets used in the 
Level Four analysis were filtered from the one-CSCI and one-CSCI data sets (97 data points), 
as demonstrated in Figure 4-6: 
 

Normalized

124

CSCI
93

1CSCI
4

Program
27

}

}

Datasets used for Level Four Filters

Datasets used for Level Three Filters

 
Figure 4-6:  Level Three and Level Four Data Sets 

 
Table 4-12 identifies the individual data sets, the corresponding number of data points within 
each data set, and the data filters utilized. 
 

Attribute  Data Set Level Three (Program) Level Four (CSCI) NCCA Raw Database 
Filter 

Code Condition 100% New  
<100% New  

8 
23 

32 
65 

New = 1 
New ≠ 1 

Platform Ship 
Ground 
Air 

2 
22 
1 

52 
25 
3 

Platform = Ship 
Platform = Ground 
Platform = Air 

Mission Area C3 
Non-C3 

11 
20 

32 
65 

Mission = C3 
Mission ≠ C3 

Software Class System 
Application 

1 
5 

18 
57 

SWClass = Sys 
SWClass = App 

Software Status Operational 
Non-Operational 

17 
6 

86 
8 

Status = Op 
Status ≠ Op33 

Software Mode Embedded 
Non-Embedded 

11 
20 

80 
17 

Mode = Em 
Mode ≠ Em 

Language Ada 
Non-Ada 

7 
24 

49 
48 

Lang1 = Ada 
Lang1 ≠ Ada 

Size Small 
Large 

   1534 
16 

   4935 

48 
 

Table 4-12:  Level Three and Level Four Data Sets 
 

                                                 
33 Four additional data points must be eliminated manually because LOTUS will not filter them.  The four data points are NCCA -417, 
NCCA-418, NCCA-426, and NCCA -454.  These must be eliminated from the data set because they contain a mixture of operational 
and non-operational software. 
34The program + 1CSCI data set was split in half according to program size (measured in ESLOC).  An Efactor of 0.07 minimized 
the CV and was applied to each data point in the program data set, converting SLOC to ESLOC.  The 15 smallest programs were 
designated the small data set, and the 16 largest programs were designated the large data set.  The split was approximately 28,000 
ESLOC. 
35The CSCI + 1CSCI data set was split in half according to program size (measured in ESLOC).  An Efactor of zero minimized the 
CV and was applied to each data point in the data set, converting SLOC to ESLOC.  The 49 smallest programs were designated the 
small data set, and the 48 largest programs were designated the large data set.  The split was approximately 16,000 ESLOC. 
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Data points were eliminated from the program or the CSCI data sets if there was a blank in the 
specific field being filtered.  For example, the resulting data sets for the platform sort (program- 
level) consisted of only 25 of the 31 data points (2 ship, 22 ground, and 1 air).  The six missing 
data points were eliminated because there were blanks in each of the six programs’ Platform 
Field (i.e., for six programs, it was unknown whether the software was developed for a ship, 
ground or air program). 
 
RESULTS 
 
1)  Code Condition 
 
Level Three (Program):  The software development productivity for a program with 100 percent 
new code was statistically lower than that for a program with less than 100 percent new code.  
The underlying data sets were fairly similar, although the “less than 100% New” data set was 
composed of more simulation and semi-detached software, while the “100% New” data set was 
composed of more C3 and embedded mode software.  These differences in the underlying data 
sets were not as pronounced as in some of the other data sets tested (i.e., the “less than 100% 
New” data set had some C3 software, and the “100% New” data set had some semi-detached 
software).  The “less than 100% New” data set was almost three times more productive than the 
“100% New” data set.  Based on these results, 100 percent new programs appear to be more 
complex at the program-level. 
 
Level Four (CSCI):  The software development productivity for CSCIs with 100 percent new 
code was statistically lower than that for CSCIs with less than 100 percent new code.  In 
contrast to the Level Three analysis, there were no major underlying data set differences that 
could have been driving this result.  Since the CSCI-level result was consistent with the Level 
Three (program-level) result, it was concluded that code condition is a productivity driver.  Table 
4-13 provides a summary of results and corresponding statistics for both Level Three and Level 
Four code condition tests: 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
Program 100% New  

<100% New  
None 
0.44 

2.485 
0.856 

43% 
61% 

 
Mann-Whitney 

 
No 

CSCI 100% New  
<100% New  

None 
0.02 

2.807 
1.665 

96% 
59% 

 
t-test 

 
No 

Table 4-13:  Level Three and Level Four Statistical Results (Code Condition) 

 
2)  Platform 
 
Level Three (Program):  There were insufficient ship (two) and air (one) data points to test; 
therefore, a determination could not be made as to whether platform is a productivity driver at 
the program-level. 
 
Level Four (CSCI):  There were insufficient air (three) data points to test, so a determination 
could not be made as to whether air versus non-air platform is a significant productivity driver at 
the CSCI-level. 
 
The software development productivity for ground CSCIs was statistically lower than that for 
ship CSCIs.  However, the result may be due to differences in the underlying data sets.  The 
ship data set was mostly Ada, anti-submarine warfare, application, embedded mode software, 
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while the ground data set was fairly well distributed.  Additionally, the ship data set was 
composed primarily of verbatim code (51 percent on average), while the ground data set was 
composed primarily of new code (92 percent on average). 
 
To make the code condition of the two data sets similar, the test was conducted again with all 
100 percent new data points deleted.  This time, the productivities of the two data sets were 
statistically equal and, in contrast to the previous results, ground CSCIs  were more productive 
than ship CSCIs.   
 
Although NCCA attempted to normalize the data sets by sorting out 100 percent new CSCIs, 
the two resulting underlying data sets were still quite different.  The actual difference in 
productivity between the ship and ground data sets could not be isolated due to other 
differences in the underlying data sets.  Therefore, a determination of whether ground versus 
ship platform is a significant productivity driver for the CSCI-level could not be made. 
Table 4-14 provides a summary of results and corresponding statistics for both Level Three and 
Level Four platform tests: 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
CSCI Ground  

Ship 
0 

0.02 
2.655 
1.522 

83% 
53% 

 
t-test 

 
No 

CSCI Ground (<100% New) 
Ship (<100% New) 

0.02 
0.02 

1.208 
1.536 

60% 
53% 

 
Mann-Whitney 

 
Yes 

Table 4-14:  Level Three and Level Four Statistical Results (Platform) 

 
3)  Mission Area 
 
Level Three (Program):  The software development productivity for C3 software was statistically 
lower than that for non-C3 software for the program-level.  However, the result may have been 
due to other differences in the underlying data sets.  The C3 data set consisted of more 
embedded mode programs, which could have decreased the average productivity.  The non-C3 
data set consisted almost entirely of support software programs, which could have increased 
the average productivity. 
 
Additionally, the code condition of the two data sets was quite different.  The C3 data set was 82 
percent new (and zero percent verbatim) on average, while the non-C3 data set was only 53 
percent new (and 21 percent verbatim) on average.  This difference could have increased the 
productivity of the non-C3 data set, while decreasing the productivity of the C3 data set. 
It is impossible to tell whether the results were truly due to mission area differences (C3 versus 
non-C3), or were driven by other data set differences.  Therefore, a determination could not be 
made as to whether mission area is a productivity driver for the program-level. 
 
Level Four (CSCI):  The software development productivity for C3 software was statistically 
lower than that for non-C3 software for the CSCI-level.  However, similar to the program-level 
analysis, this result may have been due to other differences in the underlying data sets.  The C3 
data set was composed primarily of new code (on average 88 percent new) and the non-C3 data 
set was more evenly distributed (on average 51 percent new code and 49 percent reused code). 
 
To eliminate the differences in code condition, the test was conducted again with the 100 
percent new CSCIs.  In contrast to the previous results, the productivity to develop C3 software 
was statistically equal to that for non-C3 software.  However, there continues to be uncertainty 
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with this result due to additional differences in the underlying data sets.  The 100 percent new 
C3 data set was composed almost entirely of embedded mode software, while the 100 percent 
new non-C3 data set was primarily composed of non-embedded mode software.  This could 
possibly have decreased the average productivity of the C3 data set, while increasing that of the 
non-C3 data set. 
 
Due to the underlying data set differences, it was impossible to determine whether mission area 
is a productivity driver for the CSCI-level.  Table 4-15 provides a summary of results and 
corresponding statistics for both Level Three and Level Four mission area tests. 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
Program C3  

Non-C3 

0.15 
0.18 

2.411 
1.003 

44% 
52% 

 
Mann-Whitney 

 
No 

CSCI C3  
Non-C3 

0.02 
0 

2.740 
1.767 

74% 
90% 

 
t-test 

 
No 

CSCI C3 (100% New)  
Non-C3 (100% New) 

None 
None 

2.785 
2.874 

79% 
140% 

 
Mann-Whitney 

 
Yes 

Table 4-15:  Level Three and Level Four Statistical Results (Mission Area) 
 
4)  Software Class 
 
Level Three (Program):  There were only one system and five application data points to test; 
therefore, a determination could not be made as to whether software class is a significant 
productivity driver for the program-level. 
 
Level Four (CSCI):  The software development productivity for system software was statistically 
lower than that for application software for the CSCI-level.  However, there is uncertainty 
associated with this result due to differences in the code condition of the underlying data sets.  
The system data set was composed primarily of new code (on average, 83 percent new), while 
the application data set was more evenly distributed (54 percent new code and 46 percent 
reused code).  This may have decreased the productivity of system CSCIs, while increasing that 
of application CSCIs.  In addition, the application data set was composed primarily of Ada 
programs that may also have skewed the results. 
 
To decrease the differences in code condition between the two data sets, the test was 
conducted again with only 100 percent new CSCIs.  Again, the software development 
productivity for system software was statistically lower than that for application software.  The 
underlying data sets were similar, although both data sets were almost entirely composed of 
programs from the MITRE Non-Ada Database.  Based on these test results, software class is a 
productivity driver for the CSCI-level.  Table 4-16 provides a summary of results and 
corresponding statistics for both Level Three and Level Four software class tests. 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
CSCI System  

Application 
0 
0 

3.587 
1.850 

88% 
64% 

 
Mann-Whitney 

 
No 

CSCI System (100% New)  
Application (100% New) 

None 
None 

4.241 
2.684 

91% 
53% 

 
Mann-Whitney 

 
No 

Table 4-16:  Level Three and Level Four Statistical Results (Software Class) 
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5)  Software Status 
 
Level Three (Program):  The software development productivity for operational software was 
statistically equal to that for non-operational software for the program-level.  However, there was 
a possible mapping problem concerning this field in the NCCA Raw Database.  Because this 
classification was not typically reflected in the source databases, NCCA was required to 
subjectively map programs into the operational or non-operational categories.  Therefore, the 
possibility exists that some of the data points were incorrectly mapped.  Due to the uncertainty 
involved in the actual classification of the data points, a conclusive determination could not be 
made as to whether software status is a significant productivity driver for the program-level. 
 
Level Four (CSCI):  The software development productivity for operational software was 
statistically equal to that for non-operational software for the CSCI-level.  However, this result 
may be due to other differences in the underlying data sets.  The operational data set had many 
Ada CSCIs and was composed of 61 percent new code and 34 percent verbatim code, on 
average.  The non-operational data set had no Ada CSCIs and was composed of 88 percent 
new code, on average (no verbatim code).  This difference in the composition of the code 
condition may have increased the average productivity of the operational data set, and 
decreased the average productivity of the non-operational data set. 
 
To determine whether the results were actually a reflection of differences in code condition and 
not software status, the test was conducted again with 100 percent new CSCIs.  This time, the 
productivity to develop operational software was statistically lower than that to develop non-
operational software.  However, this result also may have been skewed by additional 
differences in the underlying data sets. 
 
To determine whether the programming language, Ada in particular, was driving the 
productivities rather than software status, the two data sets were tested again with all Ada data 
points eliminated from the data sets.  The two data sets were statistically equal. 
 
In addition to these inconclusive results, the possibility exists that some of the data points were 
incorrectly mapped, as in the Level Three analysis.  Due to the uncertainty involved in the actual 
classification of the data points, as well as the inconclusive results, a valid determination could 
not be made as to whether software status is a significant productivity driver for the CSCI-level.  
Table 4-17 provides a summary of results and corresponding statistics for both Level Three and 
Level Four software status tests. 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
Program Operational 

Non-Op 
0.22 
0.22 

1.013 
0.849 

50% 
39% 

 
Mann-Whitney 

 
Yes 

CSCI Operational 
Non-Op 

0 
0 

2.182 
1.480 

86% 
81% 

 
Mann-Whitney 

 
Yes 

CSCI Op (100% New)  
Non-Op (100% New) 

None 
None 

3.271 
1.235 

86% 
106% 

 
Mann-Whitney 

 
No 

CSCI Op (Non-Ada)  
Non-Op (Non-Ada) 

0 
0 

2.985 
1.480 

83% 
81% 

 
Mann-Whitney 

 
Yes 

Table 4-17:  Level Three and Level Four Statistical Results (Software Status) 
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6)  Software Mode 
 
Level Three (Program):  The software development productivity for embedded mode software 
was statistically lower than that for non-embedded mode software.  For the program-level, 
software mode is a productivity driver and should be considered when estimating productivity. 
 
Level Four (CSCI):  The software development productivity for embedded mode software was 
statistically lower than that for non-embedded mode software for the CSCI-level.  This was 
consistent with the Level Three (program-level) result.  Therefore, software mode is a 
productivity driver and should be considered when estimating productivity. 
 
Table 4-18 provides a summary of results and corresponding statistics for both the Level Three 
and Level Four software mode tests. 
 

Level Metric Efactor Hours/ESLOC CV Test Equal? 
Program Embedded versus 

Non-Embedded 
0.15 
0.09 

2.223 
1.322 

41% 
71% 

 
Mann-Whitney 

 
No 

CSCI Embedded versus 
Non-Embedded 

0 
0.36 

2.250 
0.846 

86% 
47% 

 
Mann-Whitney 

 
No 

Table 4-18:  Level Three and Level Four Statistical Results (Software Mode) 
 
7)  Language 
 
Level Three (Program):  The software development productivity for programs written in Ada was 
statistically equal to that for programs written in another HOL.  The two data sets were 
statistically equal despite the finding that the average productivity of Ada programs was twice as 
high as non-Ada programs (0.977 Hours/ESLOC for Ada and 1.807 Hours/ESLOC for non-Ada).  
However, this finding should be viewed with caution.  The large difference in average 
productivities could be attributed to other differences in the underlying data sets.  The Ada data 
set was composed entirely of support software, 100 percent HOL, non-embedded mode, and 
simulation programs.  In addition, the Ada data set consisted on average of only 36 percent new 
code, 28 percent modified code, and 36 percent verbatim code.  All of these attributes may have 
increased the average productivity of the Ada data set.  The non-Ada data set was composed of 
C3 mission, radar and simulation programs, which were primarily non-embedded mode.  The 
non-Ada data set was composed on average of 71 percent new code and only seven percent 
verbatim code, which also may have contributed to a lower average productivity for this data 
set.  Based on these results, a defensible conclusion could not be made as to whether Ada was 
a productivity driver for the program-level. 
 
Level Four (CSCI):  The software development productivity for CSCIs written in Ada was 
statistically higher than that for CSCIs written in some other HOL.  However, there is uncertainty 
in this result due to differences in the underlying data sets.  The Ada data set consisted almost 
entirely of embedded mode, anti-submarine warfare, and application CSCIs , while the non-ADA 
data set was primarily embedded mode with a C3 mission.  Based on these results, a valid 
conclusion as to whether Ada was a productivity driver for the CSCI-level cannot be made. 
 
Table 4-19 provides a summary of results and corresponding statistics for both the Level Three 
and Level Four language tests. 
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Level Attribute Efactor Hours/ESLOC CV Test Equal? 
Program Ada  

Non-Ada 
0.3 
0.03 

0.977 
1.807 

29% 
67% 

 
Mann-Whitney 

 
Yes 

CSCI Ada  
Non-Ada 

0.02 
0 

1.512 
2.626 

55% 
88% 

 
t-test 

 
No 

Table 4-19:  Level Three and Level Four Statistical Results (Language) 
 
8)  Size 
 
Level Three (Program):  The software development productivity for small programs was 
statistically equal to that for large programs.  For the program-level, size was not a productivity 
driver and does not need to be considered when estimating software development productivity. 
 
Level Four (CSCI):  The software development productivity for small CSCIs was statistically 
equal to large CSCIs.  This was consistent with Level Three (program-level) results.  Therefore, 
program size was not a productivity driver and does not need to be considered when estimating 
software development productivity. 
 
Although software size does not appear to be a productivity driver, there may possibly be a 
critical size value (other than the mean) which will be explored in Section 5 - Effort Analysis:  
Normalized Regressions. 
 
Table 4-20 provides a summary of results and corresponding statistics for both Level Three and 
Level Four software size tests. 
 

Level Attribute Efactor Hours/ESLOC CV Test Equal? 
Program Small  

Large 
0.07 
0.07 

1.630 
1.857 

48% 
72% 

 
Mann-Whitney 

 
Yes 

CSCI Small  
Large 

0 
0 

2.124 
2.066 

83% 
91% 

 
t-test 

 
Yes 

Table 4-20:  Level Three and Level Four Statistical Results (Size) 

 
4.4  CONCLUSIONS 
 
This section discusses those attributes NCCA identified as productivity drivers.  The decision as 
to whether an attribute is a driver was based on both statistical test results and on the analyses 
of the underlying data sets. 
 
Based on the Level One analysis, the following attributes are statistically significant productivity 
drivers and should be considered when estimating software development productivity. 
 
1)  Mission (MIS versus Weapon System) 
2)  Counting Convention (Physical versus Logical) 
3)  Language (Assembly versus HOL) 
4)  Phasing (SSR through FQT versus SDR through FQT) 
 
Since the productivities of CSCI-level, program-level, and one-CSCI-level programs were 
statistically equal, there were no productivity drivers identified from the Level Two analysis. 
Table 4-21 is a summary of the Level Three and Level Four results.  A “Yes” indicates the 
attribute was a productivity driver, a “No” indicates the attribute was not a productivity driver, 
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and a “?” indicates that a defensible conclusion could not be made as to whether or not the 
metric was a productivity driver.  NCCA’s final criterion for concluding that an attribute was a 
productivity driver was significance at both the program- and CSCI-levels.  The attributes that 
satisfied this criterion are indicated by a checkmark (ü). 
 

Attribute Level 3 Analysis 
(Program-Level) 

Level 4 Analysis 
(CSCI-Level) 

Significant at Both Levels? 

Code Condition Yes Yes ü 
Platform Insufficient Data ?  
Mission Area ? ?  
SW Class Insufficient Data Yes  
SW Status ? ?  
SW Mode Yes Yes ü 
Language ? ?  
Size No No  

Table 4-21:  Level Three and Level Four Statistical Results (Summary) 
 
In summary, at a minimum, the analyst should determine the domain or higher-level mission 
(MIS versus weapon systems), counting convention, language, phasing, code condition, and 
software mode of the program to be estimated.  Due to lack of data, a defensible conclusion 
could not be made as to whether any of the other attributes are productivity drivers.  Although 
the other attributes were not definitively identified as productivity drivers, to support future 
analytical efforts, an attempt should also be made to determine the platform type, mission area, 
software class, and software status of the program being estimated.  
 
4.5  WEAKNESSES 
 
The main weakness of this analysis was the lack of data.  Of the 457 data points in the NCCA 
Raw Database, only 185 were fully defined (i.e., all attributes used in this analysis were defined 
in the database) and only 95 of those fully defined data points were normalized (i.e., weapon 
systems, logical, greater than 70 percent HOL, SDR through FQT, code condition and mode 
known).  Therefore, many data points could not be used in the analysis simply due to 
incomplete information.  This limitation was even more pronounced at the program-level, where 
only 23 of the 31 normalized data points were completely defined and useable in the entire 
Level Three analysis. 
 
Another weakness of this analysis was the quality of data in the underlying data sets.  Because 
these programs and the database were not developed in a controlled environment, NCCA was 
often unable to completely isolate the productivity drivers.  Every attempt was made to identify 
other possible drivers; however, with so many holes in the data sets, it was often impossible to 
do. 
 
4.6  FUTURE EFFORTS 
 
In the future, NCCA plans to collect more data to enhance the analysis.  The additional data will 
be used to substantiate results from all four levels of the analysis, and to further investigate 
areas of uncertainty.  Additional data will also be used to complete the analysis for those areas 
that were not investigated due to insufficient data.  An effort will be made to adequately define 
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all new data so that the underlying data sets can be completely understood and any other 
possible drivers identified. 
 
NCCA was unable to completely isolate an attribute to determine whether it was a productivity 
driver (e.g., Ada versus platform versus contractor).  It was impossible to determine whether two 
or more attributes were mutually independent or dependent on each other.  In the future, NCCA 
also plans to perform multivariate analyses on the data to determine relationships between 
software attributes with respect to productivity.  
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EFFORT ANALYSIS: 
NORMALIZED REGRESSIONS 

 
 

5.1  INTRODUCTION 
 
Based on the conclusions of the previous section, NCCA normalized the raw database in order 
to conduct regression analyses.  The product of these analyses is a set of standard effort 
estimating relationships intended for use if, and only if, the analyst is unable to collect 
contractor-specific data relevant to the software development effort being estimated. 
Examples of cases where it is appropriate to use the standard relationships are:  1) if the name 
of the future software development contractor is unknown and 2) if the program being estimated 
is so early in development that program requirements are ill defined and therefore qualified 
contractors have yet to be identified. 
 
This section of the handbook serves three purposes:  1) to summarize the NCCA Raw 
Database in its normalized form; 2) to discuss the analytical approach used to produce the 
estimating relationships; and 3) to present the estimating relationships and their application 
rules.  This section of the handbook is comprised of the following subsections: 
 

• Review of the NCCA Normalized Software Effort Database 
• Partitioning the Data 
• Analytical Approach 
• Regression Results 
• Evaluation of Program-Level versus CSCI-Level Regressions 
• Recommendations 
• Conclusions 
• Future Efforts 

 
5.2  REVIEW OF THE NCCA NORMALIZED SOFTWARE   

EFFORT DATABASE 
 
As previously discussed, NCCA used the productivity drivers identified in Section 4 - Effort 
Analysis:  Significant Drivers to filter the NCCA Raw Database into a normalized database, 
hereafter referred to as the NCCA Normalized Database.  Table 5-1 again shows how the 
number of data points diminishes as each normalization criterion is applied. 
 
The normalization process eliminated a significant number of program- and CSCI-level data 
points.  For the program-level, only 31 of 151 data points remain.  With so few points, it was 
difficult to find meaningful subsets of data.  A fairly large number of CSCI-level data points still 
remain, but the next section will show how the CSCI data points are concentrated into specific 
areas. 

5 
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 Initial Number of Data Points  
 Program CSCI 

Start:  Top-Level 151 32936 
î   
Normalizing Factors Number of Data Points 

Remaining 
 Program CSCI 
Mission = Weapon System 105 236 
î   
Code Count = Logical 56 185 
î   
HOL ≥ 70% 47 146 
î   
Scope of Effort = SDR through FQT 32 100 
î   
Code Condition Known 31 97 
î   
Development Mode Known  31 97 
î   
Hours/man-month = known 31 97 
Final NCCA Normalized Database 31 9737 

    Table 5-1:  Arriving at the NCCA Normalized Database 
 
The final program-level NCCA Normalized Software Effort Database consists of 31 data points.   
The start dates were not provided for all data points.  However, the start dates provided were 
from 1972 through 1984.  These software developments were written in FORTRAN, Ada, and 
JOVIAL.  The SLOC range is from 9 to 1,113 KSLOC.  The total effort ranged from 9 to 10,976 
man-months.  A majority of the program-level data points are semi-detached, while some 
embedded and organic modes are represented.  This database includes various missions, such 
as:  radar, command, control and communications (C3), and simulation, which were installed on 
both ground and ship platforms.  The following are the strengths associated with the program-
level database:  1) SEL data points reflect impacts of continuous process improvements; 2) Ada 
programs are well represented; 3) all development modes are well represented; 4) the size 
range is robust; and 5) the code condition is robust (modified and verbatim code well 
represented).  The following are the weaknesses associated with the program-level database:   
1) only three database sources are represented (Implication - database robustness may be 
compromised); 2) there are only 31 data points remaining after the normalization process; 3) the 
data points are primarily old; 4) blank fields in the database (# of CSCIs, start dates ...) prevent 
the application of innovative techniques; and 5) many applications are missing (missiles, sonars, 
etc.). 
 
The final CSCI-level NCCA Normalized Software Effort Database consists of 97 data points. 
Similar to the program-level database, the start dates were not provided for all data points.  
However, the CSCI start dates provided were from 1972 through 1991.  These software 
developments were written in FORTRAN, Ada, CMS-2, JOVIAL, ATLAS and C.  The SLOC 
range is from 0.411 to 492 KSLOC.  The total effort ranged from 2.1 to 5,007 man-months.  A 
majority of the CSCI-level data points are embedded, while some semi-detached and organic 
modes are represented.  This database includes various missions, such as:  radar, Anti-

                                                 
36The analysis in Section 4 – Effort Analysis:  Significant Drivers proved that one-CSCI programs can be included with CSCI-
level data points; therefore, the initial CSCI-level data set includes 23 one-CSCI data points.  
37 The analysis in Section 4 – Effort Analysis:  Significant Drivers proved that one-CSCI programs can be included with CSCI-
level data points; therefore, the final normalized CSCI-level data set includes 4 one-CSCI data points.  
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Submarine Warfare (ASW), C3, simulation and missile, which were installed on ground, air and 
ship platforms.  The following are the strengths associated with the CSCI-level database: 1) the 
total number of data points remaining, after the normalization, are 97; 2) new processes are 
represented; 3) five database sources are represented; 4) Ada is well represented; and 5) the 
size range is robust.  The following are the weaknesses associated with the CSCI-level 
database:  1) a large amount of the data points are from one program; 2) 46 of 50 Ada data 
points are from one program; 3) code condition is primarily new and verbatim (limited modified 
code); and 5) the number of programs is unknown (SMC doesn’t link CSCIs to Programs). 
 
The normalization process eliminated a significant number of the source databases.  Entire 
databases were eliminated because of one or two key differences.  Table 5-2 shows which 
source databases remained after normalization and why the others were deleted. 
 
There are only three source databases included in the NCCA Normalized Database at the 
program-level, and only five source databases included at the CSCI-level.  SMC was not well 
represented at the program-level, while the MITRE Non-Ada Database and Navy Internal data 
overwhelmed the other sources at the CSCI-level. 
 

  Number of Data Points  
Source Database Code Program CSCI Reason for Database Exclusion 

MITRE Non-Ada 1 13 38  
MITRE Ada 2 0 0 Effort does not reflect SDR to FQT 
SMC 3 4 6  
NASA SEL 4 14 4  
Navy Internal 5 0 45 Program-level data points utilized physical SLOC counting convention 
Silver SASET 6 0 0 Counting convention, hours/man-month, and scope of effort unknown 
REVIC Recalibration 7 0 0 Hours/man-month for data points from non-SMC sources could not be 

verified 
IITRI 8 0 4 Did not contain program-level data 

Table 5-2:  Normalized Database by Source Database 
 
The remaining source databases were not homogeneous.  As Table 5-3 shows, each source 
database had its own concentration of characteristics.  For instance, most of the C3 applications 
came from the MITRE Non-Ada Database.  Most databases focused on areas of the sponsor’s 
interest and likely reflected a set of software developers specific to those areas of interest.  In 
most cases NCCA did not have the original developer’s name, and, thus, could not determine 
whether a source database represented a set of diverse contractors. 
 
Source Database Mission Language Age Mode Other Comment 
1.  MITRE Non-Ada C3, Radar Fortran, Jovial, CMS-2, C 10 to 25 yrs Embedded 

Semi- 
Detached 

 

3.  SMC C3, MIS, Missile Ada, Fortran, Jovial, C 3 to 17 yrs Embedded 
Semi-Detached 
Organic 

 

4.  NASA SEL SIM Fortran, Ada 6 to 12 yrs Semi-Detached 
Organic 

Non-DoD Ada data 
points are program-
level 

5.  Navy Internal ASW Ada, CMS-2 < 8 yrs Embedded Ada data points are 
CSCI-level 

8.  IITRI C3 Ada > 7 yrs38 Embedded  

Table 5-3:  Key Aspects of Remaining Source Databases 

                                                 
38Although dates were not given, the IITRI report was published in 1989.  Therefore, since no data point could have started after 
1989, the data is at least seven years old. 
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5.3  PARTITIONING THE DATA 
 
After the NCCA Normalized Database was created, the next step was to partition and examine 
the data.  With 73 fields for each record in the NCCA Raw Database, a tremendous number of 
partitions could be made.  However, some partitions were either not possible or less useful 
and/or more subjective than others.  For instance, because it is widely believed that developer 
capability is a productivity driver, it was desirable to partition the data by software developer 
(i.e., contractor).  Unfortunately, most of the data did not provide the software developer's name.  
If the data did not support a partition at the program-level, it was also not partitioned at the 
CSCI-level, and vice versa.  Thus, consistency was maintained between the program-level and 
CSCI-level analyses. 
 
Based on a preliminary analysis of the data and a statistical test of the means of the productivity 
metrics (as documented in Section 4 - Effort Analysis:  Significant Drivers), NCCA generated 
seven partitions of the data:  one top-level and six lower-levels, as listed below: 
 
1) Top-Level 
2) 100 Percent New 
3) Not 100 Percent New 
4) Embedded 
5) greater than 75 percent reuse; 
6) greater than 50 percent reuse; and 
7) greater than zero and less than or equal to 50 percent reuse. 
 
The first four partitions are a direct result of the significant driver analyses, while the last three 
are based on current software literature and research.  The SEL analysis [10] indicates there is 
a critical point where the savings due to reuse become significant.  Barry Boehm’s revised 
COCOMO model (COCOMO II) also addresses this issue.  Therefore, NCCA subjectively 
defined the last three partitions.  Table 5-4 provides summary information about the seven 
partitions. 
 

 Number of Data Points 

Partition Program CSCI 

Top-level 31 97 

100% New  8 32 

Not 100% New  23 65 

Embedded 11 80 

Reuse > 75% 8 10 

Reuse > 50% 9 39 

0 < Reuse ≤ 50% 14 26 

Table 5-4:  Summary of Data Partitions 
 
5.4  ANALYTICAL APPROACH 
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Almost all software effort estimating models start with a core estimating equation, usually a 
function of the size of the software.  The traditional form of the equation is a non-linear 
relationship of the form: 

Effort = a * Sizeb 

 
where a is some constant, b is the exponent, size is expressed in SLOC or ESLOC, and effort is 
expressed in man-months or man-hours.  Historically, the exponent b ranged from 0.8 to 1.4.  If 
the exponent is greater than one, as the size of the software increases, the associated effort 
also increases (i.e., the next line of code will be more expensive than the previous line of code).  
This effect is known as a diseconomy of scale.  If the exponent is less than one, the opposite is 
true (i.e., the next line of code will be cheaper than the previous line of code), implying an 
economy of scale.  There are varying opinions concerning whether software can ever truly enjoy 
economies of scale.  One reason cited for diseconomies of scale is that as size increases, the 
complexity of the software increases.  However, modern software development practices stress 
modularization.  Thus, while the whole may be complex, each piece, will be less complex. 
 
Reference [18] suggests that team dynamics also play a role.  As the size of a team grows, 
more time is spent communicating along an increasing number of communication paths among 
team members, resulting in less time for developing software.  The effort associated with 
communication could grow faster than the associated gain in productivity by adding staff (a 
diminishing return).  On the other hand, as more contractors use Ada to develop software, 
experts agree that the increased usage of reused code should positively affect productivity.  
Thus, if the program is developed to promote reuse of large portions of code, the program may 
experience economies of scale.  
 
Two forms of simple least squares regression were performed for each data partition.  The first 
form was as follows: 
 

Estimated Effort = a * [New SLOC + (Efactor * Reused SLOC)]b 
 
where Efactor is a value between zero and one.  The second form of the regression was: 
 
Estimated Effort = a * [New SLOC + (Efactor1 * Modified SLOC) + (Efactor2 * Other SLOC)]b 
 
Both of these equations use a log-log transformation.  The difference between the two 
equations is in the fidelity of the reused SLOC.  In the first case, all SLOC that are reused are 
grouped together; hence, they are equally weighted with the same Efactor.  The equation with 
two Efactors is more sensitive because it treats modified code separately from the other forms 
of reused code (i.e., rehosted, translated, verbatim, etc.).  This is based on the assertion that 
modified SLOC would require more effort than other reused code types. 
 
Similar to the methodology used in Section 4 - Effort Analysis:  Significant Drivers, the 
Efactors are iteratively derived using a special regression spreadsheet model.  The model 
performs a "tradeoff analysis".  During the analysis, the model assigns the Efactor(s) a value 
between zero and one, and solves for the x variable, ESLOC, for each point in the partition.  
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When the regression is performed on this calculated ESLOC, the standard error and Predict 
(20)39 are calculated. 
 
The Efactor is then changed and the regression rerun.  This continues until the standard error 
and Predict (20) for all Efactor values, in increments of 0.01 between zero and one, have been 
computed.  The results are then analyzed to determine the value of the Efactor that produced 
the regression with the lowest standard error.  A second analysis is performed to determine 
which Efactor produced the regression(s) with the highest Predict (20). 
 
Figure 5-1 shows a typical graph produced by the regressions.  This graph plots both the 
standard error curve and the Predict (20) curve.  This example is based on ESLOC with one 
Efactor (i.e., combines all reused SLOC).  The regression with the smallest error (left axis) of 
0.62 occurred when the Efactor was 0.22.  Therefore, with this set of data and this type of 
regression (one variable), reused SLOC would require 22 percent of the effort that new SLOC 
required.  The 22 percent should be thought of as an average Efactor across all the different 
types of reused code.  This particular example's underlying data contained data points that had 
modified SLOC and verbatim SLOC.  The composition of the reused SLOC has a definite 
influence on the Efactor. 
 
The smooth line, which looks like a step function in Figure 5-1, is the Predict (20) line.  The 
Efactor that produced the maximum Predict (20) (right axis) of 29 percent was 0.02.  Thus, the 
Efactor (0.22) that gave the minimum standard error and had an associated Predict (20) of 16 
percent, was not the same Efactor (.02) that gave the maximum Predict (20). 
 

                                                 
39Predict (20) is the percentage of time the total residuals are within 20 percent of the actual value. (See Appendix C for more details 
on Predict (20) calculations.) 
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 Figure 5-1:  Trace of Standard Error and Predict (20) 
 
The standard error for the effort regression with an Efactor of 0.02, was 0.75.  Thus, to achieve 
an increase in Predict (20) from 16 to 29 percent, an increase in the standard error from 0.62 to 
0.75 must also occurs.  In some cases, this tradeoff in error is minimal.  In other cases, like this 
one, the tradeoff is substantial and not desirable.  Additionally, after more detailed analysis, it 
became apparent that to maximize the Predict (20), the statistical tools began trading off on the 
number of data points within the different database sources.  In other words, as shown in Figure 
5-2, the data source with the greatest number of data points, which is most likely homogenous, 
would drive the Predict (20).  Due to the database tradeoff involved in the Predict (20) 
calculations, NCCA preferred to minimize the standard error associated with a regression vice 
maximizing the Predict (20). 
 
A similar technique was utilized to calculate the minimum standard error and maximum Predict 
(20) for the regression equations with two Efactors.  However, due to the increased number of 
variables, additional iterations had to be performed. 
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Figure 5-2:  Predict (20) Tradeoff 
 
5.5  REGRESSION RESULTS 
 
This section documents the three sets of regressions performed:  traditional, non-traditional and 
revised traditional. 
 
1) Traditional regressions express effort (man-months) as a function of ESLOC with dummy 

slopes or dummy constants.  Efactors are used to convert SLOC to ESLOC. 
 
2) Non-traditional regressions express effort in two forms:  a) effort as a function of new SLOC 

and reused SLOC; and b) effort as a function of total SLOC and one minus percent reused 
SLOC (i.e., % new).  The second approach discounts effort as more reuse code is used.  
For these two approaches, Efactors are not used because the actual amount of code or the 
percent of reused (modified, rehosted, translated, verbatim, etc.) SLOC is an independent 
variable.   

 

 
 
 

 
3) Revised traditional regressions combine the strengths of the traditional and non-traditional 

regressions.  Effort is a function of ESLOC and % reuse (through the use of an additional 
dummy variable).  This approach also uses Efactors to convert SLOC to ESLOC. 

 
All equations presented below, where effort is in man-months, have been normalized to reflect 
the 152 hours per man-month standard. Each set, including an analysis of the resulting 
equations and the elimination process, will be discussed in more detail below. 
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5.5.1  TRADITIONAL REGRESSIONS 
 
Traditional regressions express effort as a function of ESLOC.  Additionally, dummy variables 
are introduced into the model by way of dummy slopes and dummy constants.  By using a 
dummy variable, a second variable is introduced into the regression.  The dummy variable takes 
the value of zero or one depending on the observation.  A dummy constant applies the same 
impact to all programs, regardless of size, as illustrated in the following equation: 
 

Effort = ( )bESLOCa ∗ * e cD1  
 
where D1 is a dummy constant variable. 
 
In contrast, a dummy slope models the non-constant effect attributes have on programs of 
varying sizes.  In other words, a dummy constant applies the same impact (eD1c) to a program 
regardless of size, while a dummy slope’s impact will change depending upon the size of the 
program.  The net effect of the dummy slope then becomes: 
 

Effort = ( ) cDb 1ESLOCa +∗  
 
See Appendix C for a detailed discussion of dummy variables and their application. 
 
For each of the seven data partitions identified earlier, an organized set of regressions was 
attempted to derive the statistically significant effort regressions at both the program- and CSCI-
levels.  Table 5-5 summarizes the different scenarios. 
 

 Number of Data 
Points 

Dummy Variables 

Subset Program versus 
CSCI 

100% New Embedde
d 

ESLOC
> 

Top-level 31 versus 97 ü ü ü 
100% New40 8 versus 32  ü ü 
Not 100% New 23 versus 65  ü ü 
Embedded Only 11 versus 80 ü  ü 
Reuse > 75% 8 versus 10  ü ü 
Reuse > 50% 9 versus 39  ü ü 
0% < Reuse ≤ 
50% 

14 versus 26  ü ü 

Table 5-5:  Summary of Regressions 
 
NCCA used dummy slopes in the regressions instead of the more traditional dummy constants 
because, statistically, the dummy slope outperformed the dummy constant.  Additionally, NCCA 
believes the impact of an attribute (e.g., code condition, mode) varies as the size varies (e.g., 
the impact of embedded mode may be much greater on a large program than on a small 
program). 
                                                 
40ESLOC calculation is not applicable for this subset since the SLOC are new. 
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As defined in Section 4 - Effort Analysis:  Significant Drivers, only those variables which 
were consistently significant at both the CSCI- and program-levels were utilized as dummy 
variables.  Therefore, the attributes represented by the dummy variables applied in the 
regression runs were similar to those used in partitioning the data.  The only dummy variable 
that was not a criterion for data partitioning was “ESLOC>?”.  This particular dummy variable 
was applied to determine whether a critical size value (other than the median which was tested 
in Section 4 - Effort Analysis:  Significant Drivers) existed. 
 
A total of 240 candidate traditional regressions were developed.  Appendix D details each 
regression.  Some general findings about the regressions are: 
 
• Net exponents (including dummy slopes) for program-level regressions ranged from 0.75 to 

1.6, while net exponents for CSCI-level regressions ranged from 0.55 to 1.5. 
 
• Program-level regressions typically had net exponents greater than one, while CSCI-level 

regressions typically had net exponents less than one.  However, the constant for the CSCI-
level regressions was usually greater (sometimes by a factor of ten) than that for the 
program-level regressions. 

 
• CSCI-level regressions exhibited greater variance than program-level regressions, possibly 

because the CSCI regressions included more database sources, which were non-
homogeneous. 

 
• Efactor weights for reused SLOC were greater at the program-level than at the CSCI-level.  

This is probably due to the underlying composition of the program-level versus CSCI-level 
databases (i.e., CSCI data consisted of reused code which was primarily verbatim, and 
therefore, less complex while the program data did not). 

 
• CSCI-level regressions with two Efactors generally exhibited a lower variance than 

regressions with one Efactor.  This effect was the exact opposite for program-level 
regressions. 

 
Once the 240 regressions were completed, undesirable (biased, inaccurate) regressions were 
eliminated.  Three rounds of elimination were performed to arrive at the final set of acceptable 
regressions.  The first round was very broad, while the last round was performed for very 
specific reasons.  A summary of each round of elimination follows. 
 
5.5.1.1  Round One Eliminations 
 
In this first round, all estimating relationships that did not have significant statistics were 
eliminated.  Significance was set at the 95 percent confidence level.  Additionally, some of the 
effort regressions had the same Efactor when optimized for minimum standard error and 
maximum Predict (20); that is, the equations duplicated each other.  All duplicate equations 
were also eliminated during round one, leaving a total of 132 candidates. 
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5.5.1.2  Round Two Eliminations 
 
In this round, all remaining estimating relationships were investigated to determine if the form of 
the equation (the coefficients and exponents) made technical sense.  Several problems were 
uncovered and are discussed in detail below. 
 
Two Efactors:  The set of regressions consisting of two Efactors had some drawbacks.  
Efactor1 weighted modified SLOC while Efactor2 weighted the remaining reused (rehosted, 
verbatim, or translated) SLOC.  In many program-level regressions, the resulting relationships 
estimated a higher weight for the remaining reused SLOC than for modified SLOC (i.e., 
Efactor2>Efactor1).  This implied that modified SLOC were easier to develop than the remaining 
reused SLOC.  This did not make sense technically.  Since most databases did not specifically 
categorize reused SLOC, NCCA had to develop mapping guidelines to classify them in the 
NCCA Raw Database.  For instance, if a program consisted of zero percent redesign and 
recode, NCCA mapped the associated SLOC into the verbatim field.  It is possible that NCCA’s 
mapping scheme was inaccurate.  Although most of the CSCI-level regressions did not exhibit 
this problem, the rules used to map their SLOC were the same as those used at the program-
level.  Thus, if there is a mapping problem at the program-level, then there is also a problem at 
the CSCI-level.  Therefore, all regressions of the two Efactor form were eliminated.  This 
procedure eliminated 75 of the remaining 132 candidate equations, thus leaving 57 equations. 
 
Critical ESLOC>?:  Significant relationships were developed in which a critical size dummy 
variable was determined.  However, in some regressions, the dummy slope calculation was 
based on only 2 or 3 data points.  In other regressions, the resulting equation weighted the 
dummy slope counterintuitively.  For example, at the CSCI-level, a regression found 10,000 
ESLOC to be the critical size value; however, anything smaller than 10,000 ESLOC was 
estimated to be more expensive while anything greater was estimated to be less.  This is 
conceivable, if there is a given amount of level of effort required regardless of the size of the 
program.  However, at the program-level, the results were reversed (i.e., programs smaller than 
the critical size value were less expensive).  NCCA could not explain the contradiction, 
therefore, regressions with ESLOC>? as a dummy variable were eliminated.  This reduced the 
number of equations by an additional 20, leaving a total of 37 estimating relationships for the 
next round of elimination. 
 
5.5.1.3  Round Three Eliminations 
 
The third round of elimination focused on program and CSCI specific reasons for exclusion.  
Three areas were analyzed:  1) performance and comparison of top-level equations versus 
lower-level equations; 2) robustness of the underlying data utilized in the equation; and 3) 
degrees of freedom of the resulting equations. 
 
Program-Level:  The top-level equation [5-1], which was derived from all 31 data points and 
had an embedded dummy slope, mimicked its corresponding lower-level equation [5-2], which 
consisted of only the 11 embedded data points as shown below: 

Top-Level Equation (Program-Level, Embedded) 
Effort = 0.0041 * [New SLOC + (0.19 * Reused SLOC)][1.0377 + (0.0651 * D1)] [5-1] 
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R2 = 0.92 Std Error = 0.54 Std Errorembedded
41 = 0.45  Predict (20)= 32%   

 Predict (20)embedded
41 = 55% N = 31 

where D1 equals one if the program is embedded and zero otherwise. 
 

Lower-Level Equation (Program-Level, Embedded) 
Effortembedded = 0.0041 * [New SLOC + (0.09 * Reused SLOC)](1.1101) 

R2 = 0.92 Std Errorembedded = 0.42 Predict (20) = 45% N = 11 
 
The constant slope (1.1101) and net slope (1.0377 + 0.0651 = 1.1028) of the two equations are 
almost exactly the same.  While the R2s are identical, the standard error of 0.42 for equation [5-
2], is slightly better than the partial standard error of 0.45 for equation [5-1]; however, there is a 
significant tradeoff in degrees of freedom (9 versus 28) when using equation [5-2].   
 
The top-level equation [5-3], which was derived from all 31 data points and had a 100 percent 
new dummy slope, also mimicked its corresponding lower-level equation [5-4], in which only 100 
percent new data points were utilized.  
 
The partial standard error in the top-level equation [5-3] is the same as the standard error in the 
lower-level equation [5-4], yet a very large tradeoff in degrees of freedom again occurred while 
using the lower-level regression.  In contrast, the R2 and Predict (20) are higher for the lower-
level equation [5-4].  However, as discussed previously, due to the source database influences 
involved in the Predict (20) calculations, NCCA prefers to minimize the standard error 
associated with a regression.  Therefore, since equations [5-1] and [5-3], the top-level equations 
with corresponding dummy slopes, perform as well as equations [5-2] and [5-4], these lower 
level equations were eliminated. 
 

Top-Level Equation (Program-Level, 100% New) 
Effort = 0.0013 * [New SLOC + (0.35 * Reused SLOC)] [1.1345 + (0.0841 * D1)] 

R2 = 0.93 Std Error = 0.5 Std Error100% New
42 = 0.27 Predict (20) = 50% 

Predict (20)100% New
42

 = 55% N = 31 
where D1 equals one if the program is 100% new and zero otherwise. 

 
Lower-Level Equation (Program-Level, 100% New) 

Effort100% New = 0.0011 * (Total)(1.2304) 
  R2 = 0.98 Std Error = 0.27 Predict (20) = 63% N = 8 
 
CSCI-Level:  Similar to the program-level regressions, the top-level equation, with an 
embedded dummy, mimicked the corresponding lower-level equation.  Therefore, the lower-
level equations from the embedded subsets of data were eliminated. 
 
Program- and CSCI-Level:  Table 5-6 shows the distribution of data points for each of the 
lower-level equations.  Many of the lower-level equations that remained had low standard error 

                                                 
41StdError embedded and Predict (20)embedded represent the standard error and Predict (20) of the equations when applied to the 
underlying embedded data points (N=11) only, vice calculating the standard error and Predict (20) of the overall equation, which 
would be calculated using all 31 data points 
42StdError 100% New and Predict (20)00% New represent the standard error and Predict (20) of the equations when applied to the 
underlying 100% New data points (N=8) only, vice calculating the standard error and Predict (20) of the overall equation, which 
would be calculated using all 31 data points 

[5-3] 

[5-2] 

[5-4] 
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and high Predict (20) values; however, the number of data points and, therefore, the degrees of 
freedom were small.  For example, the >75% reuse data set consisted of eight and ten data 
points at the program- and CSCI-levels, respectively.  The small data sets were especially 
prevalent at the program-level.  
 

  Source Database Code43 
Partition Level 1 3 4 5 8 Total 

100% New Program 5 3    8 
 CSCI 23 5 1 0 3 32 
Not 100% New Program 7 1 15   23 
 CSCI 15 1 3 45 1 65 
Reuse > 75% Program 2 1 5   8 
 CSCI 6  1 3  10 
Reuse > 50% Program 3 1 5   9 
 CSCI 9 0 1 29  39 
0% < Reuse ≤ 50% Program 5  9   14 
 CSCI 6 1 2 16 1 26 
Embedded Program 9 1    10 
 CSCI 29 2  45 4 80 

Table 5-6:  Subset Distribution of Data Points Across Source Databases 
 
Additionally, many of the other lower-level regressions consisted of only two database sources.  
For example, at the program-level, the embedded partition consisted of only 10 data points and 
all but one came from the same database source.  For these reasons, all of the remaining 
lower-level program-level equations were eliminated.  All of the CSCI-level lower-level equations 
were also eliminated except for those from the 100% new and not 100% new partitions.  These 
lower level equations did not mimic the top-level equations with associated dummy variables, as 
was the case at the program-level, and they did not suffer from low degrees of freedom or a low 
number of database sources. 
 
After three rounds of elimination, a total of 16 equations remained.  NCCA next eliminated 
equations which maximized Predict (20) vice minimizing the standard error, based on the biases 
previously discussed (i.e., the regressions were fitting the curve through the data source with 
the greatest number of data points).  This left 10 significant equations, eight top-level program- 
and CSCI-level equations with and without dummy variables and two CSCI lower level 
equations.  Of these, NCCA selected the equations with the lowest standard error that also 
captured the effects of the significant drivers identified in Section 4 - Effort Analysis: 
Significant Drivers.44  This resulted in the following four equations: 

 
Top-Level Equation (Program-Level) 

Effort = 0.0028 * [New SLOC + (0.3 * Reused SLOC)][1.0549 + (0.0668 * D1 + (0.0427 * D2)] 

  R2 = 0.94  Std Error = 0.47 Predict (20) = 35% N = 31 Range = 4.2 - 72.3 EKSLOC 
where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise 

 
Top-Level Equation (CSCI-Level) 

                                                 
43 The code number NCCA assigned to each source database:  1 = MITRE Non-Ada; 3 = SMC; 4 = NASA SEL; 5 = Navy Internal; 8 
= IITRI Report. 
44 The mode dummy was insignificant for the not 100 percent new lower-level equation. 

[5-5] 
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Effort = 0.0229 * [New SLOC + (0.03 * Reused SLOC)] [0.8609 + (0.0315 * D1 + (0.0529 * D2)] 
 R2 = 0.77 Std Error = 0.67 Predict (20) = 26%  N = 97 Range = 0.4 - 253.4 EKSLOC 

where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise 

 
Lower-Level Equation (CSCI-Level, 100% New CSCIs) 

Effort = 0.0387 * (Total SLOC)[0.779 + (0.1269 * D1)] 

   R2 = 0.76    Std Error = 0.8    Predict (20) = 22%    N = 32    Range = 0.4 - 128.2 KSLOC 
where D1 equals one if the CSCI is embedded and zero otherwise 

 
Lower-Level Equation (CSCI-Level, Not 100% New CSCIs)44 

   Effort = 0.0114 * [New SLOC + (0.04 * Reused SLOC)](0.9766)  
  R2 = 0.81    Std Error = 0.  56    Predict (20) = 31%    N = 65    Range = 1.5 - 255.8 EKSLOC 
 
For the CSCI-level, there remained two possible alternatives to estimate effort, either a top-level 
equation [5-6] or a set of lower level equations based on whether the CSCI was 100 percent 
new [5-7] or less than 100 percent new [5-8].  As previously stated, the program-level, lower-
level 100 percent new and not 100 percent new equations were eliminated because they 
mimicked the top-level regressions. 
 
100 PERCENT NEW PROGRAMS 
 
A problem was discovered upon further examination of the 100 percent new CSCI-level 
equation [5-7].  Figure 5-3 provides a comparison of two hypothetical programs.  If program A is 
a 100 percent new program, then the CSCIs that constitute program A will also be 100 percent 
new.  Program B is not 100 percent new.  However, it is definitely possible within a program that 
is not 100 percent new to have a mixture of CSCIs that are 100 percent new and CSCIs that 
have some level of reuse. 
 

Program A (100% New) Program B (< 100% New) 
CSCI #1A 100% New CSCI #1B 100% New 
CSCI #2A 100% New CSCI #2B   80% New 
CSCI #3A 100% New CSCI #3B   50% New 
Total Effort EA Total Effort EB 

Figure 5-3:  One Hundred Percent New CSCIs 
 
When the data was filtered for 100 percent new CSCIs, CSCIs from both 100 percent new and 
less than 100 percent new programs would be included.  Thus, the 100 percent new CSCIs 
from 100 percent new programs would be combined with the 100 percent new CSCIs from not 
100 percent new programs.  Once this was accomplished, however, it appeared that the 
productivity metrics associated with CSCIs #1A, #2A, and #3A were worse than the productivity 
of CSCI #1B. 
 
A subset of the NCCA Normalized Database was used to determine if there was a difference 
between 100 percent new CSCIs from 100 percent new programs and 100 percent new CSCIs 
from not 100 percent new programs.  The average hours per SLOC for 100 percent new CSCIs 
from 100 percent new programs was twice as high as the average hours per SLOC for the 100 
percent new CSCIs  from not 100 percent new programs. 

[5-6] 

[5-7] 

[5-8] 
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Intuitively, it makes sense that CSCI #1B would be cheaper per line of code than any 
corresponding CSCI in Program A.  The effort to design a brand new CSCI for an existing 
system is probably easier than designing a brand new CSCI for a system which does not exist 
yet.  One possible explanation for this difference is: 
 

Improper Effort Allocation:  The effort data for some programs in the NCCA Raw 
Database appears to have been allocated to the CSCI-level.  If effort was allocated, it 
was probably done on a pro rata basis (bigger CSCIs get more effort allocated to them, 
smaller CSCIs get less).  A 100 percent new CSCI would have more requirements 
analysis than a not 100 percent new CSCI.  However, if the effort was allocated from the 
program-level, the 100 percent new CSCI may receive only a proportion (based on size) 
of the effort associated with requirements analysis instead of its true share.  The result 
would be that the 100 percent new CSCI from the not 100 percent new program would 
erroneously appear to require less effort than a 100 percent new CSCI from a 100 
percent new program (which would not suffer this allocation problem). 

 
Ultimately, the reasons for the differences experienced are unknown.  If there is an allocation 
problem, it can only be detected and corrected during future collection of historical data. 
 

• Based on this discrepancy, NCCA recommends that the analyst not estimate a 100 
percent new program with the sum of 100 percent new CSCI-level regressions. 

 
In theory, this also means that a CSCI-level regression should not mix CSCIs from 100 percent 
new programs with those from not 100 percent new programs.  The original 100 percent new 
CSCI-level regression (resulting in equation [5-7]) included this mixture.  Unfortunately, due to 
the insufficient number of data points, it was not possible to develop separate regressions. 
 
Again, based on the above discussion of the difference in 100 percent new CSCIs, NCCA 
recommends that 100 percent new programs be estimated with the top-level program equation 
[5-5] vice estimated at the CSCI-level with equation [5-6] and then summed.  As a result, 
equations [5-7] and [5-8] were eliminated, leaving one top-level program regression (equation 
[5-5]) and one top-level CSCI regression (equation [5-6]).  These regressions are in Appendix D. 
 
Overall, the strengths of these equations are:  1) they quantitatively solve for the Efactor, so the 
uncertainty and variance of the Efactor are reflected in the overall equation’s statistical results; 
and 2) they account for the significant drivers (i.e., code condition and mode) without sacrificing 
degrees of freedom.  However, the weaknesses are: 
  
1) The regressions do not account for high reuse programs separately (i.e., high reuse 

programs and CSCIs are averaged into the regressions along with low reuse programs and 
CSCIs and thereby drive the resulting average productivity up).  Therefore, the regressions 
probably overestimate productivity on programs or CSCIs with low reuse that are not 100 
percent new (100% new programs or CSCIs are accounted for with a dummy variable) and 
underestimate productivity of high reuse programs. 

 
2) The program-level regression’s [5-5] underlying database consists primarily of non-

embedded data points, so resulting productivity metrics may be optimistic when applied to 



Section 5 - Effort Analysis: Normalized Regressions 
 

5 - 16 

programs which are primarily embedded.  However, the application of the dummy variable 
attempts to account for the embedded programs, and the residuals do not indicate any bias. 

 
3) The CSCI-level regression [5-6] is driven by one underlying program with 45 CSCIs (i.e., 46 

percent of the database); therefore, if programs estimated are significantly different from this 
program, the regression may not be appropriate. 

 
4) The CSCI-level regression [5-6] exponent is less than one, which implies economies of 

scale (as the CSCI size increases, productivity improves).  As discussed on page 5-4, there 
are varying opinions on the feasibility of economies of scale.  In practice, NCCA expects that 
as the program size increases, the number of CSCIs will also increase.  Therefore, since the 
CSCI-level traditional equation is applied at the CSCI-level, the constant of the equation will 
be reapplied for each additional CSCI, which in effect eventually negates the impact of the 
exponent.  In other words, the larger the program (SLOC), typically, the larger the CSCI 
count, and hence, the more times the constant will be added to the overall estimate.  At 
some point (depending on the size of and number of CSCIs associated with the program), 
the CSCI equation crosses over and actually estimates more effort than the program-level 
equation, which has a smaller constant but an exponent greater than one (i.e., economies of 
scale are no longer realized). 

 
Despite these weaknesses, the regressions are still valid approximations, and they are 
considered in the final analysis (Section 5.7), which compares the remaining viable regressions. 
 
5.5.2  NON-TRADITIONAL REGRESSIONS:  SET ONE 
 
Thus far, the focus of the discussion has centered around a fairly traditional regression for 
software effort of the form: 
 

Actual Effort = ƒ (ESLOC) 
 
In addition to the final two traditional candidates (equations [5-5] and [5-6]), a set of "non-
traditional" effort regressions was developed.  This analysis was based on developing 
regressions where effort was a function of SLOC without the use of an Efactor.  Two different 
sets of analyses were developed and are detailed below. 
 
The first approach was to specifically filter the database for all data points that have the same 
type of SLOC.  For example, one filter was for data points with non-zero values for new and 
modified SLOC.  If enough data points were present, a direct regression (without the need for 
Efactors) was performed. 
 
NCCA created several subsets of data that met this criteria.  The resulting regression equations 
are outlined below: 
 

Actual Effort = a * (New SLOC)b * (Modified SLOC)c 
 
Actual Effort = a * (New SLOC)b * (Verbatim SLOC)c 
 
Actual Effort = a * (New SLOC)b * (Reused SLOC)c 



Section 5 - Effort Analysis: Normalized Regressions 
 

5 - 17 

These regressions were performed at both the program- and CSCI-levels.  The equations that 
contained modified SLOC as an independent variable were significant for both the CSCI- and 
program-levels.  The equations that contained verbatim SLOC as an independent variable were 
not significant in either case (program- or CSCI-level).  This makes sense because the Efactor 
weights that were calculated for the verbatim code in the traditional regressions were quite small 
(between 0.01 and 0.03).  Unless the regression statistics were very tight, this small weight 
would be insignificant and difficult to obtain.  The regressions based on reused SLOC had 
mixed results.  They were significant at the program-level, but not at the CSCI-level.  Again, this 
was due to the underlying database.  The program-level reused SLOC consisted of a large 
amount of modified SLOC, while the CSCI-level data points consisted primarily of verbatim 
SLOC. 
 
Overall, the strengths of these equations are:  1) they do not require an Efactor, so one level of 
uncertainty and variance is reduced and 2) they resulted in better statistics at the CSCI-level.  
However, the weaknesses are:  1) the underlying database sizes are small; 2) the issue of 
mapping the reused SLOC into the correct category still remains; 3) there were not enough data 
points to develop regressions for other types of reused code, such as translated and rehosted; 
4) they resulted in worse statistics at the program-level, and 5) it is not clear how dummy slopes 
would be handled with this type of model (i.e., are they applied to new SLOC, modified SLOC, 
or both?).  Because of these weaknesses, NCCA eliminated this set of non-traditional 
regressions from further consideration. 
 
5.5.3  NON-TRADITIONAL REGRESSIONS:  SET TWO 
 
A second type of non-traditional effort regression was also investigated: 
 

Effort = a * (Total SLOC)b * (1 - %Reused SLOC)c 
 
The first term, a * (Total SLOC)b, is defined as a nominal effort scalar.  The second term, (1 - 
%Reused SLOC)c , is defined as a reuse discount factor.  When regressions are performed, c is 
a value between zero and one.  Therefore, as the amount of reuse increases from zero to 100 
percent, the term (1-%Reused)c decreases.  When the amount of reuse is very low, the 
estimated effort will essentially be derived from the first part of the equation.  As the amount of 
reuse increases, an increasing amount of effort will be removed from the nominal effort scalar 
value.  The results of the regressions are provided below as well as in Appendix D: 
 

Program-Level Equation 
Effort = 0.0015 * (Total SLOC)(1.1075) * (1 - %Reused SLOC)(0.3329)) 

  R2 = 0.91 Std Error = 0.52    Predict (20) = 18%    N = 22   Range  9.0 - 1,113.0 KSLOC 
 

CSCI-Level Equation 
Effort = 0.0108 * (Total SLOC)(0.9767) * (1 - %Reused SLOC)(0.8394) 

  R2 = 0.81 Std Error = 0.56    Predict (20) = 32%   N = 65    Range 4.7 - 492.0 KSLOC 
 
The major strength of this method is that it introduces the notion of a non-linear discount factor 
for reuse (i.e., the proportionate amount of effort removed from the nominal effort is much 
greater at a reuse level of 50 percent than it would be at a reuse level of 10 percent).  Figure 5-4 
demonstrates this graphically.   

[5-9] 

[5-10] 



Section 5 - Effort Analysis: Normalized Regressions 
 

5 - 18 

Effect of Re-Use on SW Discount

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 25% 50% 75% 100%

Percent Re-Use

P
er

ce
n

t 
D

is
co

u
n

t 
fr

o
m

 
N

o
m

in
al

 E
ff

o
rt

CSCI

Program

 
Figure 5-4:  Effort Discount as a Function of Reuse 

 
A more detailed analysis of the discount factor shows that the critical reuse value (the point 
where the standard error is minimized) at the program-level is 82 percent (i.e., percent reuse 
becomes significant at greater than or equal to 82 percent).  See Appendix D for supporting 
documentation. 
 
Another strength of this model is that the effect of changing from "new" to "reused" is not a step 
function, but a smooth curve.  In the traditional models with Efactors, changing the amount of 
reuse by one line of code has the same effect on ESLOC whether it is the first line of reuse or 
the last, therefore, the same "discount" is always applied (i.e., the Efactor is constant).  With the 
reuse discount factor applied in equations [5-9] and [5-10], a cumulative effect is achieved.  The 
amount of discount for the next line of reused code is greater than the previous line of reused 
code (i.e., the Efactor is not constant).  The final strength was the database size.  Both 
regressions had a robust set of data (included more than one database source) and both had a 
sufficient sample size. 
 
Weaknesses of this approach are:  1) the standard error is slightly higher at the program-level 
when compared against the traditional effort regression (equation [5-5]); 2) dummy slopes, such 
as embedded mode, a statistically proven productivity driver, were not utilized.  The dummy 
slopes could only be applied to one term in the equation (either the lines of code term or the 
reused term), and it could not be determined which was correct; 3) the regressions yield 
inaccurate estimates if the percent reused equals 100 percent (i.e., effort = 1 - 1 = 0).  However, 
NCCA questions the accuracy of any sizing estimate for a program that includes no new 
development; and 4) the program-level discount factor is exceptionally flat in comparison to the 
CSCI-level discount factor.  Specifically, for a program with 90 percent reuse, the program-level 
regression results in an estimate of approximately 46 percent of the effort of a 100 percent new 
program.  On the other hand, the CSCI-level regression estimates the same program to require 
only 14 percent of the effort of a 100 percent new program.  Intuitively, the program-level 
regression appears to be conservative. 
 
Despite these weaknesses, the regressions are promising and intuitively pleasing, and are 
considered in the final analyses (Section 5-7), which compares the remaining viable 
regressions. 
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5.5.4  REVISED TRADITIONAL REGRESSIONS 
 
Based on the strengths and weaknesses of equations [5-5], [5-6], [5-9], and [5-10], NCCA 
developed one additional set of traditional regressions.  NCCA performed regressions which 
combined the impacts of the non-traditional discount factor into the traditional equations, by 
incorporating a dummy variable for percent reused SLOC.  These equations also take the form: 
 

Effort = a * (ESLOC)b * e D c1  
 
The results of the regressions are provided below as well as in Appendix D: 
 

Top-Level Equation (Program-Level) 
Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)] [1.1067 + (0.0912 * D1) + (0.0326 * D2) - (0.0982 * D3)] 

  R2 = 0.96  Std Error = 0.42    Predict (20) = 58%    N = 31   Range = 9.0 - 1,113.0 EKSLOC 
where D1 equals one if the program is 100 percent new and zero otherwise; D2 equals one if the program is in embedded mode and 

zero otherwise; and D3 equals one if percent reused is greater than or equal to 82 percent and zero otherwise. 
 

Top-Level Equation (CSCI-Level) 
Effort = 0.0211 * [New SLOC + (0 * Reused SLOC)] [0.8590 + (0.0338 * D1) + (0.0631 * D2) + (0.0623 * D3)] 
 R2 = 0.78    Std Error = 0.66    Predict (20) = 29%    N = 97    Range = 0.4 - 245.8 EKSLOC 
where D1 equals one if the CSCI is 100 percent new and zero otherwise; D2 equals one if the CSCI is in embedded mode and zero 

otherwise; and D3 equals one if percent reused is greater than or equal to 75 percent and zero otherwise. 
 
The major strength of this method is that it accounts for reuse, as well as the other significant 
drivers identified previously (i.e., code condition and mode).  The statistics of these equations 
improve in comparison to the previous top-level regressions (equations [5-5] and [5-6]). 
The major weakness of this approach at the program-level is that the Efactor equals one (i.e., 
reused SLOC require the same effort as new SLOC).  Although NCCA expected the Efactor to 
increase when the high reuse programs were normalized through the use of a dummy variable, 
an Efactor of one is not intuitively pleasing.  However, some experts say that reusing code 
requires more effort than development from scratch.  Although counterintuitive, it’s not infeasible 
in certain circumstances.  Additionally, an Efactor equal to one also introduces an additional 
problem when attempting to compare productivity metrics between candidate equations, as 
demonstrated in the following example. 
 
• Based on Equation [5-5] and an Efactor = 0.3 for an embedded program: 
 

If New SLOC = 10,000 and Reused SLOC = 10,000 then  ESLOC = 13,000,               
Effort = 91.75 MM; Productivity = 13,000/(91.75 MM * 152 hrs/MM) = 0.93 ESLOC/hour or 

         = 20,000/(91.75 MM * 152 hrs/MM) = 1.43 SLOC/hour  
 
• Based on Equation [5-11] and an Efactor = 1.0 for an embedded program with less than 82 

percent reuse code:  
 

If New SLOC = 10,000 and Reused SLOC = 10,000 then ESLOC = 20,000;   
Effort = 95.36 MM; Productivity = 20,000/(95.36 MM * 152 hrs/MM) = 1.38 ESLOC/hour, or   

         = 20,000/(95.36 MM * 152 hrs/MM) = 1.38 SLOC/hour  
 

[5-11] 

[5-12] 
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Based on the metric “ESLOC/hour”, equation [5-11] appears to be more productive (1.38 
ESLOC/hour versus 0.93 ESLOC/hour), when in actuality, it is estimating more effort (95.36 
versus 91.75 man-months) for the same program.  Hence, the analyst must be careful when 
comparing productivity metrics among regressions with varying equivalent code conversion 
techniques. 
 
At the CSCI-level, the major weakness of this approach is the counterintuitive impact of high 
reuse.  For CSCIs with greater than 75 percent reuse, the equation adds effort vice deleting it.  
This contradicts the program-level equation and NCCA’s expectations.  Upon further analysis, it 
became evident that one data point (NCCA-414) was driving this effect.  After deletion of this 
data point, the derived regression resulted in a critical reuse value of 61 percent (vice the 75 
percent previously calculated).  Also, the resulting equation deletes effort for those data points 
which are greater than the critical value, vice adding effort as the original equation predicts.  
However, unless specific, detailed technical or programmatic information supported deletion of 
data points, NCCA did not delete apparent outliers.   
 
Another weakness of this approach is that the Efactor for this equation at the CSCI-level is zero, 
which implies that no additional effort is required for reused code.  Although the effort may be 
small, especially if the code used entirely as is (verbatim), NCCA still contends that there is 
some effort associated with this code required to gain an understanding of it and verify 
requirements. 
  
However, despite these weaknesses, the program-level regression is appealing, so this set of 
equations is also considered in the final analyses, which compares the remaining viable 
regressions. 

 
5.6  EVALUATION OF PROGRAM-LEVEL VERSUS CSCI-           

LEVEL REGRESSIONS 
 
Three sets of estimating relationships remained to be evaluated.  The first set was the top-level 
traditional regressions ([5-5] and [5-6]) which incorporated empirically developed Efactors.  The 
second set was the non-traditional regressions:  Set Two ([5-9] and [5-10]) based on total SLOC 
and percent reused SLOC.  The final set was the revised top-level traditional regressions [5-11] 
and [5-12] which also incorporated percent reused SLOC.  To try to obtain additional information 
about the individual sets of regressions, NCCA conducted two levels of comparison.  The first 
set of comparisons compared the CSCI versus Program estimate deltas for each set of 
regressions (i.e., [5-5] versus [5-6] deltas; [5-9] versus [5-10] deltas; [5-11] versus [5-12] deltas).  
See Appendix D for details.  The second set of comparisons, also provided in Appendix D, 
compared the estimates derived from each regression at both the program- and CSCI-level (i.e., 
[5-5] versus [5-9] versus [5-11] and [5-6] versus [5-10] versus [5-12]). 
 
A separate set of validation data was constructed to evaluate how the program and sum of the 
CSCI-level effort regressions compared.  The data was not used at this point to compare 
estimates with actuals because some of the validation data was non-normalized.45  The main 
criterion for accumulating this data was that the program and CSCIs had to be linked.  The 

                                                 
45 This data is used later to assess the overall estimating methodology, including using non-normalized productivity factors to 
estimate the non-normalized data points.  This is detailed in Section 7 – Effort Analysis:  Overall Process. 
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database sources that provided this information were the MITRE Non-Ada, MITRE Ada, SMC, 
NASA SEL, Navy Internal, and SASET databases.  The data represented programs with 
different quantities of CSCIs and a range of CSCI sizes.  The only other criterion was that the 
SLOC were counted as logical lines. 
 
A total of 22 programs with associated CSCI information were identified.  As Table 5-7 shows, 
most of the validation data points came from the MITRE Non-Ada Database.  Also, there were a 
significant number of 100 percent new programs.  Since no comparison was made at this time 
between estimates and actuals, the sum of CSCI-level estimates using a CSCI-level 100 
percent new estimate, could be used on the 100 percent new programs. 
 

Record # Program 
Size 

DB 
Code 

CSCI 
Count 

Avg CSCI 
Size 

Mission Language %New 

NCCA-67 11.0 5 2  399.6 UUV Ada 100 
NCCA-286 134.7 6 6   44.6 Radar Assembly 100 
NCCA-287 57.0 6 4   43.9 C3 HOL 100 
NCCA-291 58.5 4 2  234.1 SIM Fortran 15 
NCCA-315 74.8 2 6    9.5 C3 Ada 51 
NCCA-347 95.1 2 7   14.6 SIM Ada 100 
NCCA-367 114.4 4 2  231.9 SIM Fortran 87 
NCCA-409 185.6 1 4   42.0 Radar Jovial 16 
NCCA-410 204.0 1 5  204.0 Radar Jovial 80 
NCCA-411 210.0 5 3  284.2 ASW C 19 
NCCA-417 231.9 1 12   28.6 C3 CMS-2 100 
NCCA-418 234.1 1 7  185.6 Radar Jovial 62 
NCCA-422 254.1 3 6  338.1 C3 Ada 62 
NCCA-425 263.2 6 15  295.2 C3 Assembly 100 
NCCA-427 267.9 6 4   47.3 Radar HOL 37 
NCCA-428 283.5 6 6   84.7 Radar HOL 87 
NCCA-431 295.2 1 18   37.4 C3 Assembly 100 
NCCA-435 338.1 1 2   47.5 C3 Fortran 47 
NCCA-441 422.5 5 9    2.2 C3 Ada 100 
NCCA-454 1113.0 1 4   22.4 C3 Jovial 50 
NCCA-456 1420.8 5 10 1,113.0 C3 C 99 
NCCA-458 1997.9 5 52   84.5 ASW Ada 47 

Table 5-7:  Summary of Validation Database 
 
As Table 5-8 shows, program- and CSCI-level estimates tended to be within 20 to 50 percent of 
each other, with mean absolute deviations (MADs) of 26.6 percent, 36.7 percent, and 28.8 
percent, respectively.  This is very good considering the standard error around most of the final 
regressions was between 40 and 60 percent.  See Appendix D for graphical representations of 
the final six equations and associated supporting spreadsheets and regression comparison 
tables for both the program- and CSCI-levels. 
 
A few interesting observations from this analysis were noted (as shown in Figures 5-5 to 5-8): 
 
• No trend was found when the differences were compared against CSCI average size or 

CSCI count (Figures 5-5 and 5-8 respectively). 
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 % EQ #5 versus ΣEQ #6 EQ #9 versus ΣEQ #10 EQ #11 versus ΣEQ #12 
Record # NEW % Difference % Difference % Difference 

NCCA-067 100 10.5% 110.9% 35.3% 
NCCA-286 100 -32.8% 55.3% -29.1% 
NCCA-287 100 -19.7% 73.1% -11.0% 
NCCA-291 15 -33.9% -35.8% -4.3% 
NCCA-315 51 15.0% 17.2% 5.8% 
NCCA-347 100 -28.6% 63.2% -38.2% 
NCCA-367 87 -3.6% 45.0% 3.0% 
NCCA-409 16 -16.9% 29.5% -8.6% 
NCCA-410 80 -55.0% -41.1% 14.3% 
NCCA-411 19 -35.3% -41.7% -65.7% 
NCCA-417 100 -38.7% 46.4% -37.6% 
NCCA-418 62 -19.5% 4.1% -21.9% 
NCCA-422 62 -7.7% 10.2% -24.7% 
NCCA-425 100 -39.0% 45.4% -38.5% 
NCCA-427 37 -27.4% -16.2% -50.2% 
NCCA-428 87 10.3% 31.0% 34.0% 
NCCA-431 100 -41.6% 41.4% -42.1% 
NCCA-435 47 -6.4% -11.7% -10.7% 
NCCA-441 100 -46.5% 35.1% -47.3% 
NCCA-454 50 -38.1% -17.7% -52.1% 
NCCA-456 99 -28.4% 14.0% -10.1% 
NCCA-458 47 -30.6% -21.1% -50.0% 
MAD  26.6% 36.7% 28.8% 
Predict (20)  40.9% 31.8% 36.4% 
%Above  13.6% 68.2% 18.2% 
%Below  86.4% 31.8% 81.8% 

Table 5-8:  Summary of Program versus CSCI Differences 

 
• Both of the CSCI-level traditional regressions tended to consistently estimate a 

smaller effort than the corresponding traditional program-level regressions.  This 
effect is the exact opposite for the non-traditional regression.  Upon inspection of the 
non-traditional equation (and the associated figures 5-5 through 5-8), it became 
apparent that the program-level regression discounts the nominal effort (a * Total 
SLOCb) much more slowly (i.e., the program-level exponent is smaller, therefore the 
discount is smaller as the percent reuse increases) than the CSCI-level regression.  
However, the CSCI-level regression has a much larger constant.  Therefore, 
because a majority of the programs are greater than 80 percent new, the constant 
vice the discount factor drives the resulting delta.   

 
• Additionally, as Figure 5-6 demonstrates for the non-traditional equation, the critical 

reuse crossover value appears to be approximately 50 percent.  More specifically, at 
50 percent the smaller constant in the program-level non-traditional regression is 
overcome by the greater discount factor that is applied by the CSCI-level non-
traditional regression.  In fact, as the graph depicts, the delta between CSCI- and 
program-level data points generally increases as the percent reuse varies above or 
below the critical reuse value of 50 percent. 

 
• The biggest differences between the program- and CSCI-level regressions occurred 

when estimating 100 percent new programs using the non-traditional equations.  As 
shown in Appendix D, this is being driven by the non-traditional program-level 
equation, which estimates effort on average to be substantially less than the 
traditional equations, while the CSCI-level estimates remain stable across equations.  
This will not be a problem in practice, however, since NCCA recommends that CSCI-
level regressions for 100 percent new programs not be used (see discussion on 
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page 5-14).  Except for 100 percent new programs estimated using the non-
traditional equation, the regression differences were stable over the range of percent 
new. 
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Figure 5-5:  Average CSCI Size versus CSCI-Program Differences 
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Figure 5-6:  Percent New versus CSCI-Program Differences 
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Figure 5-7:  Program Size versus CSCI-Program Differences 
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Figure 5-8:  CSCI Count versus CSCI-Program Differences 
 

• As the overall program size increased, the deltas between the CSCI- and program-
level non-traditional regressions decreased, as shown in Figure 5-7. 

 
• As expected, and demonstrated in the lower level spreadsheets provided in Appendix D, the 

revised traditional regression was consistently higher than the traditional top-level 
regression for program-level estimates of programs with large amounts of new code.  
Conversely,  the revised traditional regression was consistently lower than the traditional 
regression for high-reuse program-level estimates, due to the discount factor.  In contrast, 
the CSCI-level regressions tended to remain relatively stable across all code condition 
comparisons. 

 
5.7  RECOMMENDATIONS 
 
Table 5-9 shows the equation forms remaining for consideration at the program-level. 
 
Program-Level Equations Effort = ƒ (        ) Std Error Predict 

(20) 
Comments  

Traditional - Top-Level ESLOC; 100% New; Mode 0.47 35% Overestimates low -reuse 
data points & 
underestimates high-reuse 
data points 

Non-Traditional Total SLOC; (1-% reuse) 0.52 18% Flat discount rate; Does not 
account for all significant 
drivers (mode) 

Revised Traditional - Top-
Level 

ESLOC; 100% New; Mode; %Reuse 0.42 58% Efactor = 1 
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Table 5-9:  Program-Level Equations Remaining 
 
At the program-level, since the non-traditional equation appeared to discount programs too 
slowly and resulted in poorer statistics, the non-traditional equation was eliminated from further 
consideration.  Hence, the top-level traditional and the revised traditional equation (which also 
accounted for high reuse programs) remained.  The revised traditional equation improves the 
statistics of the regression and although the Efactor equals one, the 100% new and %Reuse 
dummies adjust for the differences in effort between new and reused code.  Additionally, since 
the original traditional equation does not have dummy variables for both 100% new and high 
reuse programs, NCCA deleted it from any further consideration. 
 
Table 5-10 presents the equation forms remaining for consideration at the CSCI-level. 
 

CSCI-Level Equations Effort = ƒ(        ) Std Error Predict (20) Comments 
Traditional - Top-Level ESLOC; 100% New; Mode 0.67 26% Exponent<1 which implies 

economies of scale 
Non-Traditional SLOC; %New  0.56 32% Does not account for all 

significant drivers (mode) 
Revised Traditional - Top-
Level 

ESLOC; 100% New; Mode; %Reuse 0.66 29% Counterintuitive; Efactor = 0 

Table 5-10:  CSCI-Level Equations Remaining 
 
Because the revised traditional CSCI-level equation resulted in counterintuitive results (as 
percent reuse increased, effort also increased), it was eliminated from further consideration.  
The non-traditional equation has the best statistics, however, it does not account for 
development mode differences, which were proven to be a productivity driver in Section 4 - 
Effort Analysis:  Significant Drivers.  Since NCCA considers recognition of the significant 
drivers to be a crucial attribute, NCCA deleted the CSCI-level non-traditional equation from 
further consideration.  The traditional equation does account for productivity drivers, however, 
since the exponent is less than one, it also implies economies of scale as previously discussed 
on page 5-14.  As stated previously, NCCA expects that as the program size increases, the 
number of CSCIs will also increase.  Therefore, the constant will be applied repeatedly, which 
will eventually negate the impact of the exponent (i.e., economies of scale will no longer be 
realized). 
 
Based on the previously cited strengths and weaknesses and the statistics provided above, 
NCCA recommends using the revised traditional program-level, equation [5-11], and the 
traditional CSCI-level, equation [5-6], regressions as the standard NCCA effort tools.  Based on 
the underlying databases (reused code compositions), these tools should be applied as follows: 

 

• If the program being estimated is 100 percent new, apply the following equation (revised  
traditional program-level equation with the 100 Percent new dummy variable enabled) at the 
program-level: 

 
Revised Traditional Program-Level Equation 
Effort = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)] 

    R2 = 0.96    Std Error = 0.42   Predict (20) = 58%    N = 31    Range = 9 - 1,113 EKSLOC 
where D1 equals one if the program is embedded and zero otherwise. 
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• If the program being estimated has greater than or equal to 82 percent reused code, 
apply the following equation (revised traditional program-level equation with the percent 
reused dummy variable enabled) at the CSCI-level: 

 
Revised Traditional Program-Level Equation 

Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)] 
    R2 = 0.96    Std Error = 0.42   Predict (20) = 58%    N = 31    Range = 9 - 1,113 EKSLOC 

where D1 equals one if the program is embedded and zero otherwise. 
 

• If the program being estimated is neither 100 percent new nor greater than or equal to 82 
percent reused code, and the reused code is evenly distributed between modified and 
reused code, apply the following equation (revised traditional program-level equation) at the 
program-level: 

 
Revised Traditional Program-Level Equation 

   Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)]  
    R2 = 0.96    Std Error = 0.42   Predict (20) = 58%    N = 31    Range = 9 - 1,113 EKSLOC 

where D1 equals one if the program is embedded and zero otherwise. 
 

• If the program being estimated is neither 100 percent new nor greater than or equal to 82 
percent reused code, and the reused code is predominately verbatim, apply the following 
equation (traditional CSCI-level equation) at the CSCI-level: 

Traditional CSCI-Level Equation  
Effort = 0.0229 * [New SLOC + (0.03 * Reused SLOC)] [0.8609 + (0.0315 * D1)+ (0.0529 * D2)] 

 R2 = 0.77 Std Error = 0.67 Predict (20) = 26%  N = 97 Range = 0.4 - 253.4 EKSLOC 
where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise 

 

 
This overall approach for estimating programs with sufficient program definition is 
recommended for the following reasons: 
 
1) Significant productivity drivers (100% new and mode), as defined in Section 4 - Effort 

Analysis:  Significant Drivers, are accounted for in the equations. 
2) The anticipated decrease in effort expected on high reuse programs is accounted for in the 

equations. 
 
3) The differences expected in effort due to different reuse compositions (predominantly 

verbatim versus not predominantly verbatim) are accounted for in the equations. 
 
4) None of the resulting equations consistently overestimates or underestimates effort (i.e., 

more balanced residuals than the lower-level regressions). 
 
5) One hundred percent new programs, which have historically been more difficult to develop, 

are accounted for in the equations. 
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5.8  CONCLUSIONS 
 
Over 300 regressions were performed on various subsets of the NCCA Raw Database, with 
different explanatory variables applied.  Yet, of all these regressions, only a few had a standard 
error that was under 40 percent, and most of these could not be considered because they either 
had too few data points or resulted in counterintuitive results.  Provided below is a list of the 
reasons why the resulting regressions experienced relatively large variances. 
 
1) Code Counting Definitions:  Even though the database classified the SLOC as physical or 

logical, there are many other ways that code can be counted.  Some databases were careful 
to state that their SLOC count included only delivered SLOC, but others did not.  At an even 
lower level, some programs only counted delivered executable SLOC, while others counted 
all delivered code.  Unless the programs all come from the same developer, who counts the 
SLOC consistently, there will be variances in size from program to program due to different 
counting conventions. 

 
2) Definitions:  The NCCA Raw Database was normalized by the phasing of the reported 

effort (i.e., it included only data points which reported effort from SDR through FQT).  
However, NCCA could not, in all situations, normalize for the differences in labor categories 
included within these phases, or the actual taskings included.  The NCCA Raw Database 
does not track effort by labor category or activity to show what is included in the total effort.  
However, NCCA did attempt to verify that all databases included “direct support” types of 
activities, such as Program Management, Quality Control and Documentation.  This is 
another source of variance in the data and another reason why data collection and 
analogies should be contractor specific. 

3) Schedule:  The effort required to develop a program is dependent upon the schedule; a 
suboptimal schedule will increase development effort.  There were not enough data points in 
the NCCA Raw Database to test the effect of schedule on the total effort.  Even if there 
were, the database only tracks actual schedule.  The initial staffing of a program is based on 
estimated schedule.  If the initial estimate is too steep, then a program manager may have 
to add staff, which reduces overall productivity.  Ultimately, the difference between the 
optimal schedule and the actual schedule may influence the results and account for 
differences experienced among programs. 

 
4) Non-Homogeneous Data:  The NCCA Raw Database includes both older and newer 

programs.  Many of the programs come from the early to mid-1970s when punch cards, 
batch-mode processing, and slow computers resulted in larger compiler times.46 The older 
programs are also characterized by: 

 
• Large amounts of Assembly, 
• Low amounts of reuse, 
• Less sophisticated tools, and 

• Storage and processing constraints. 
 

                                                 
46 The Doty Model [16] actually had a factor to account for the amount of time it took for software to be compiled. 
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Conversely, newer programs have: 
 
• Low or no amount of Assembly, 
• Higher amounts of reuse, 
• Modern tools, and 
• Faster processors with cheaper memory. 

 
Intuitively, the older programs should have lower productivity than newer programs, but in 
actuality only minimal differences have been experienced.  This is possibly because newer 
programs are not only more productive, but also more complex.  The complexity of newer 
programs negates the productivity improvements made by implementing modern tools, faster 
processors, etc.  Therefore, over time minimal differences are realized.  Additionally, the NCCA 
Raw Database represents a combination of well-behaved and ill-behaved programs.  It does 
not, however, contain any canceled programs.  Some of the programs experienced code 
growth, effort growth, and schedule slippages, due to the following reasons: 
 

• Staffing:  The developer may have experienced an unexpectedly high rate of turnover on 
key personnel skills.  Also, the developer may have experienced difficulty building up to 
a particular staffing level due to market constraints. 

 
• Requirements creep:  The customer may have demanded more functionality from the 

software.  Additionally, energetic developers may have added unwanted features to 
make the product more desirable. 

 
• Reuse:  The code the developer wanted to reuse might have required software fixes or 

enhancements to meet the required functionality. 
 
Databases, which tracked the initial estimates of size, schedule, and effort along with the 
resulting metrics, would also be good indicators of ill-behaved programs.  However, the NCCA 
Raw Database does not track effort estimates, so NCCA cannot assess the behavior of the 
underlying programs.  Similar to the issue of old versus new data points, the standard 
regressions tend to average out the effects of well-behaved and ill-behaved programs. 
 
5) Tools and Processes:  The process and tools used to develop software can play an 

important role.  Unfortunately, many of the metrics that attempt to capture these factors are 
subjective.  When available for a given data point, the NCCA Raw Database identifies the 
design methodology used to develop the software (waterfall, incremental, spiral and 
evolutionary).  However, because this information was often not available, NCCA could not 
statistically test the significance of process.  The database does not identify the type of tools 
used to develop the software.  But, based on the fact that the database identifies 
development time, it is safe to assume that the database captures the effects of modern, as 
well as older, tools and practices. 

 
In conclusion, collecting more data that is sensitive to the areas discussed above will lead to 
better overall top-level regressions.  However, it is unlikely that the variance of top-level 
regressions will ever approach the lower variance of contractor-specific regressions.  As such, 
NCCA’s recommended approach to estimating software development effort is to gather 
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complete, detailed, contractor-specific data, and use this data to construct contractor-specific 
estimating relationships.  Accordingly, the standard estimating relationships presented in this 
section should be used if, and only if, the analyst is unable to collect contractor-specific data 
relevant to the future software development effort being estimated. 

 
5.9  FUTURE EFFORTS 
 
Decreasing estimating variance and adapting regressions to be more sensitive to environmental 
variables rests solely on the ability to collect additional information in the future.  The following 
are some areas that should be explored: 
 
1) Internal Reuse:  Programs that reuse portions of their code over and over have common 

SLOC.  In the NCCA Raw Databases, NCCA mapped this type of SLOC into the verbatim 
SLOC category.  However, a potential problem exists:  a program may inaccurately state 
that it is 100 percent new, when in fact common SLOC will be reused within the same 
program.  The common code can only be considered new once.  Hence, the NCCA Raw 
Database should be updated to discriminate between SLOC reused from outside programs 
and organizations and SLOC that are reused in the same program. 

 
2) Schedule:  It is desirable to create an empirical model that includes both size and schedule.  

NCCA should also investigate how scheduling at the CSCI-level affects overall program 
productivity to determine whether there is an optimal sequence. 

 
3) WBS Activity:  If the NCCA Raw Database captured software development effort by 

standardized WBS activity, then activity-specific estimating relationships could be 
investigated.  Perhaps programming is directly related to the size of the program, while 
program management support is tied more directly to the overall length of the schedule.  
Estimates based on these WBS activities would enable a more sensitive “what-if” analysis to 
be accomplished (especially in areas like acquisition reform or when changes in software 
development standards occur). 

 
4) Platform Integration:  The NCCA Raw Database has no information regarding the cost of 

integrating a group of software products into an aircraft's Operational Flight Program (OFP) 
or into a ship's combat system.  These costs are typically not included in the OFP’s or 
combat system’s development cost, but rather are attributed to the host platform (i.e., the 
aircraft or ship). 

 
5) Non-Operational to Operational Ratios and Associated Effort:  A significant amount of 

operational code is usually required for software development, but to truly estimate the total 
effort required, data collection should focus on both operational and non-operational code. 

 



 

 

 
EFFORT ANALYSIS: 

NON-NORMALIZED PRODUCTIVITY FACTORS  
 
 

6.1  INTRODUCTION 
 
NCCA performed an analysis of the NCCA Raw Database in order to provide analysts with 
productivity factors to estimate effort when the standard regressions (discussed in Section 5 - 
Effort Analysis:  Normalized Regressions) are not appropriate.  The standard regressions 
should not be utilized when either:  1) analogous or contractor specific data points exist; 2) the 
program being estimated does not meet NCCA’s normalization criteria; or 3) sufficient definition 
to determine whether the program meets NCCA’s normalization criteria is unavailable. 
 
NCCA’s normalization criteria are based on the analysis in Section 4 - Effort Analysis:  
Significant Drivers and are as follows: 
 
Domain or Mission is weapon system, 
Code counting convention is logical, 
Code is written primarily in an HOL (more than 70 percent), and 
Phasing is from SDR through FQT. 
 
In addition, the following information must be defined for the program being estimated: 
 
Code condition, 
Software mode, and 
Hours per man-month. 
 
For situations where the regressions are not appropriate, NCCA has developed non-normalized 
top-level productivity factors.  This section of the handbook is composed of the following four 
subsections:    
 

• Data 
• Methodology and Results 
• Recommendations 
• Conclusions 

 
6.2  DATA 
 
All data used in this analysis came from the NCCA Raw Database (Section 3 - Software 
Database).  NCCA created 12 data sets from the NCCA Raw Database to develop the factors. 
 
 
 

6 
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6.3  METHODOLOGY AND RESULTS 
 
NCCA followed four steps to develop the productivity factors.  First, NCCA selected the factors 
to be developed.  Second, the specific data sets required for the analysis were filtered from the 
NCCA Raw Database.  Third, the productivity was calculated for each data point.  Fourth, the 
average productivity, standard deviation, and CV were calculated for each data set.  The 
average productivity is the top-level productivity factor. 
 
The factors NCCA developed were based on the results of the analysis in Section 4 -Effort 
Analysis:  Significant Drivers.  The factors were developed to address non-normalized 
programs, (i.e., programs that do not satisfy all of the criteria shown on the previous page).  Six 
sets of top-level factors were developed.  Each set contains two factors (i.e., a total of 12 factors 
were developed).  One of the factors should be used when the code condition is unknown, the 
other should be used when the code condition is known.  The factors for programs where the 
code condition is unknown are expressed in Hrs/Total SLOC.  The factors for programs where 
the code condition is known are expressed in Hrs/ESLOC.  The factors were developed in this 
manner to address code condition as a productivity driver. 
 
The first set of factors was developed for situations where the normalized standard regressions 
cannot be utilized because the program being estimated is a MIS program.  There were 
insufficient data points to create normalized MIS regressions.  Hence, these are non-normalized 
factors.  The second and third sets of factors were developed for situations where the 
normalized standard regressions cannot be utilized because the program being estimated is 
written in more than 30 percent Assembly (i.e., the HOL content is less than 70 percent).  The 
fourth set of factors was developed for situations where the normalized standard regressions 
cannot be utilized because the program being estimated was sized using a physical code 
counting convention.  The fifth set of factors was developed for situations where the normalized 
standard regressions cannot be utilized because the code counting convention used to size the 
program being estimated is unknown.  The sixth set of factors was developed for situations 
where the program being estimated was sized using a logical code count (a normalization 
criterion), yet the standard regressions cannot be utilized because the phasing is unknown.  The 
remainder of this section discusses how each of the 12 factors was developed. 
 
6.3.1  MIS PROGRAMS 
 

METHODOLOGY 
 
Two data sets were filtered to develop the factors to be utilized for MIS program estimates.  
Since these are top-level non-normalized factors, phasing, mode, and hours per man-month 
were not used as criteria for these or any of the other factors. 
 
  1)  Code condition is unknown (17 data points): 
 
The data set used to develop this factor consisted of MIS programs written primarily in an HOL 
minus six outliers.47  The following six data points were eliminated for the same reason they 

                                                 
47 The data w as not filtered on code condition.  In this data set and those that follow, all data points where code condition was 
known were included in the code condition unknown data set, and treated as if the code condition was unknown. 
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were eliminated from the “MIS” data set in Section 4 - Effort Analysis:  Significant Drivers 
(see page 4-3):  NCCA-39, NCCA-43, NCCA-55, NCCA-74, NCCA-92, and NCCA-157.  NCCA 
concluded that the actual effort for each of these six CSCIs was not captured, but rather that the 
total effort for the program was allocated to the CSCI-level.  Table 6-1 demonstrates how this 
data set was filtered from the NCCA Raw Database.  The italicized letters are the field names in 
the NCCA Raw Database used for the filters.  The non-italicized letters are the criteria utilized to 
filter the NCCA Raw Database. 
 
  2) Code condition is known (17 data points): 
 
Because the code condition was known for all 17 data points (i.e., there were no blanks in the 
New field), this factor was developed from the same data set as the previous factor (see Table 
6-1). 
 

Code Condition Unknown Code Condition Known 
Mission = MIS 

Lang1 ≠ Assembly 
(Eliminated 6 outliers) 

Mission = MIS 
Lang1 ≠ Assembly 

(Eliminated 6 outliers) 
New ≠ blank 

Table 6-1:  Productivity Factor (MIS Programs) 

 
The productivity, expressed in Hrs/SLOC was then calculated for each data point in the MIS 
code condition unknown data set.  A 152-hour per man-month rate was assumed for those 
programs that did not report actual rates. 
 
The productivity, expressed in Hrs/ESLOC, was then calculated for each data point in the MIS 
code condition known data set.  Again, a 152-hour per man-month rate was assumed for those 
programs that did not report actual rates. 
 
The average productivity, standard deviation, CV, and resulting CV of the factor (CVest)48 were 
then calculated for each data set.  The average productivity of each data set constitutes the 
standard productivity factor. 
 
RESULTS 
 
The factors to be utilized when analogous or contractor specific data is not available, the 
program is MIS, and 
 
 1)  Code condition is unknown = 0.6913 Hrs/Total SLOC 
     CV = 86%; CVest = 132%; n = 17 
 
 2)  Code condition is known = 0.8240 Hrs/ESLOC 
     Efactor = 0; CV = 72%; CVest = 103%; n = 17 
 

                                                 
48 NCCA performed an additional calculation to obtain a comparable CV of the estimate derived from the application of the standard 
factor.  CVest  is the standard error of the estimate divided by the mean of the actual values: 

CVest = 
Y

SEEdataset  
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Although not intentionally filtered in this manner, the data sets used to develop these factors 
consisted entirely of programs that were sized by a logical code count.  Therefore, applying this 
factor to MIS programs sized by a physical code count may overestimate effort.  Since these 
factors were developed from data sets consisting of programs written primarily in an HOL, they 
should not be applied to MIS programs written primarily in Assembly (although a MIS program 
written in Assembly is highly unlikely).  Factors (1) and (2) are the only factors applicable to 
MIS, since all future factors will be developed from data sets consisting entirely of weapon 
systems. 
 
6.3.2  WEAPON SYSTEM PROGRAMS - PRIMARILY ASSEMBLY 
 
METHODOLOGY 
 
Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating 
programs written in more than 30 percent Assembly. 
 
 3)  Code condition is unknown (68 data points): 
 
The data set used to develop this factor consisted of weapon system programs written in more 
than 30 percent Assembly (i.e., less than 70 percent HOL).  Table 6-2 demonstrates how this 
data set was actually filtered from the database. 
 
 4)  Code condition is known (61 data points): 
 
The data set used to develop this factor consisted of the 68 data points listed above minus 
seven data points for which the code condition was unknown (see Table 6-2). 
 

Code Condition Unknown Code Condition Known 
HOL < 0.7 

Mission ≠ MIS or blank49 
 

HOL < 0.7 
Mission ≠ MIS or blank 

New ≠ blank 
Table 6-2:  Productivity Factor (30% Assembly Programs) 

 
RESULTS 
 
The factors to be utilized when additional analogous or contractor specific data is not available, 
the program is written in more than 30 percent Assembly, and 
 
 3)  Code condition is unknown = 2.6504 Hrs/Total SLOC 
     CV = 120%; CVest = 177%; n = 68 
 
 4)  Code condition is known = 3.0093 Hrs/ESLOC 
     Efactor = 0.6; CV = 115%; CVest = 168%; n = 61 
 
These factors were developed from data sets that consisted of programs written, on average, in 
82.4 percent Assembly.  If the program being estimated consists of more than 82.4 percent 

                                                 
49All programs which have a blank in the Mission field must also be eliminated since some of these programs may be MIS 
programs. 
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Assembly, these factors may underestimate the effort.  If the program being estimated consists 
of less than 82.4 percent Assembly, these factors may overestimate the effort.  This and the 
next set of factors are the only ones applicable to programs written in Assembly, since all other 
factors were developed from data sets consisting entirely of programs written primarily in an 
HOL. 
 
6.3.3  WEAPON SYSTEM PROGRAMS - 100 PERCENT ASSEMBLY 
 
METHODOLOGY 
 
Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating 
programs written entirely in Assembly. 
 
 5)  Code condition is unknown (40 data points): 
 
The data set used to develop this factor consisted of weapon system programs written entirely 
in Assembly (i.e., zero percent HOL).  Table 6-3 demonstrates how this data set was filtered 
from the database. 
 
 6)  Code condition is known (38 data points): 
 
The data set used to develop this factor consisted of the 40 data points listed above minus two 
data points for which the code condition was unknown (see Table 6-3). 
 

Code Condition Unknown Code Condition Known 
HOL = 0 

Mission ≠ MIS or blank 
HOL = 0 

Mission ≠ MIS or blank 
New ≠ blank 

Table 6-3:  Productivity Factor (100% Assembly Programs) 
 
RESULTS 
 
The factors to be utilized when analogous or contractor specific data is not available, the 
program is written entirely in Assembly, and 
 
 5)  Code condition is unknown = 3.7383 Hrs/Total SLOC 
      CV = 100%; CVest = 132%; n = 40 
 
 6)  Code condition is known = 3.9904 Hrs/ESLOC 
      Efactor = 0.69; CV = 98%; CVest = 125%; n = 38 
 
Although it is highly unlikely that a MIS program would be written in Assembly, analysts must 
use caution if applying these factors to MIS programs since they were developed from data sets 
consisting entirely of weapon systems. 
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6.3.4  PHYSICAL CODE COUNTING CONVENTION 
 
METHODOLOGY 
 
Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating 
programs sized with a physical code counting convention. 
 
 7)  Code condition is unknown (18 data points): 
 
The data set used to develop this factor consisted of weapon system programs that were written 
primarily in an HOL (greater than or equal to 70 percent), and sized according to a physical 
code counting convention.  Table 6-4 demonstrates how this data set was filtered from the 
database. 
 
 8)  Code condition is known (18 data points): 
 
Because the code condition was known for all 18 data points, this factor was developed from 
the same data set as previously described (see Table 6-4). 
 

Code Condition Unknown Code Condition Known 
Count = P 

Mission ≠ MIS or blank 
HOL ≥ 0.7 

Count = P 
Mission ≠ MIS or blank 

HOL ≥ 0.7 
New ≠ blank 

Table 6-4:  Productivity Factor (Physical Programs) 
 
RESULTS 
 
The factors to be utilized when analogous or contractor specific data is not available, the Code 
Counting Convention is physical, and 
 
 7)  Code condition is unknown = 0.6357 Hrs/Total SLOC 
      CV = 124%; CVest = 93%; n = 18 
 
 8)  Code condition is known = 0.7350 Hrs/ESLOC 
      Efactor = 0; CV = 104%; CVest = 123%; n = 18 
 
Although not intentionally filtered in this manner, the data sets used to develop these factors 
consisted entirely of embedded mode programs.  Therefore, the analyst must use caution when 
applying these factors to non-embedded mode programs, since they may overestimate effort of 
non-embedded programs.  To reiterate, these factors should not be applied to MIS programs or 
to programs written primarily in Assembly since they were developed from data sets consisting 
entirely of weapon system programs written primarily in an HOL. 
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6.3.5  UNKNOWN CODE COUNTING CONVENTION 
 
METHODOLOGY 
 
Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating  
programs with an unknown code counting convention. 
 
 9)  Code condition is unknown (273 data points): 
 
The data set used to develop this factor consisted of weapon system programs that were written 
primarily in an HOL (greater than or equal to 70 percent).  Table 6-5 demonstrates how this data 
set was filtered from the database. 
 
 10)  Code condition is known (262 data points): 
 
The data set used to develop this factor consisted of the 273 data points listed above minus 11 
data points for which the code condition was unknown (see Table 6-5). 
 

Code Condition Unknown Code Condition Known 
Mission ≠ MIS or blank 

HOL ≥ 0.7 
 

Mission ≠ MIS or blank 
HOL ≥ 0.7 

New ≠  blank50 
Table 6-5:  Productivity Factor (Unknown Code Condition Programs) 

 
RESULTS 
 
The factors to be utilized when analogous or contractor specific data is not available, the Code 
Counting Convention is unknown, and 
 
 9)  Code condition is unknown = 1.3238 Hrs/Total SLOC 
      CV = 128%; CVest = 196%; n = 273 
 

10)  Code condition is known = 1.6763 Hrs/ESLOC 
      Efactor = 0.12; CV = 107%; CVest = 215%; n = 262 
 
Again, since these factors were developed from data sets consisting entirely of weapon system 
programs that were written primarily in an HOL, they should not be applied to programs written 
primarily in Assembly or to MIS programs. 
 
6.3.6  LOGICAL CODE COUNTING CONVENTION - PHASING                                                
  UNKNOWN 
 
METHODOLOGY 
 
Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating 
programs with a logical code counting convention and phasing unknown. 

                                                 
50The blanks in the New field must be eliminated manually.  There is one program with zero percent new code.  This data point 
should be included in the data set, although LOTUS will eliminate it along with the blanks in the field. 
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 11)  Code condition is unknown (186 data points): 
 
The data set used to develop this factor consisted of weapon system programs that were sized 
by a logical code counting convention and written primarily in an HOL (greater than or equal to 
70 percent).  Table 6-6 demonstrates how this data set was filtered from the database. 
 
 12)  Code condition is known (185 data points): 
 
The data set used to develop this factor consisted of the 186 data points listed above minus one 
data point for which the code condition was unknown (see Table 6-6). 
 

Code Condition Unknown Code Condition Known 
COUNT = L 

Mission ≠ MIS or blank 
HOL ≥ 0.7 

COUNT = L 
Mission ≠ MIS or blank 

HOL ≥ 0.7 
New ≠ blank51 

Table 6-6:  Productivity Factor (Logical Programs, Phasing Unknown) 
 
RESULTS 
 
The factors to be utilized when additional analogous or contractor specific data is not available, 
the Code Counting Convention is logical, the phasing is unknown, and 
 
 11)  Code condition is unknown = 1.3360 Hrs/Total SLOC 
     CV = 113%; CVest = 182%; n = 186 
  
 12)  Code condition is known = 1.8597 Hrs/ESLOC 
     Efactor = 0.04; CV = 83%; CVest = 161%; n = 185 
 
These factors should not be applied to programs written in more than 30 percent Assembly or to 
MIS programs. 

 
6.4  RECOMMENDATIONS 
 
These top-level productivity factors should be applied if, and only if, contractor-specific data is 
unavailable and the NCCA standard regressions are not appropriate (i.e. the program being 
estimated does not meet NCCA’s normalization criteria).  These factors should only be applied 
as a last resort, rough order-of-magnitude estimate with the corresponding CVs clearly 
identified.  If the program is not sufficiently defined (which is typically the case during the very 
early stages of its life cycle), then these factors may be applied for a quick, top-level estimate.  
However, analysts must realize, and state, that the factors are very top-level and the resulting 
estimates have large uncertainty bounds. 
 
Table 6-7 provides a summary of the top-level non-normalized productivity factors.  If the 
analyst is forced to utilize the top-level productivity factors, NCCA suggests that a thorough 

                                                 
51The blanks in the New field must be eliminated manually.  There is one program with zero percent new code.  This data point 
should be included in the data set, although LOTUS will eliminate it along with the blanks in the field. 
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analysis of the data set underlying the factor be conducted to determine if the data set is truly 
analogous to the program being estimated.  

 
Application 

Code 
Condition 
Unknown 
(Hrs/Total 

SLOC) 

Code Condition 
Known 

(Hrs/ESLOC) 

MIS; Primary language is an HOL 0.6913 0.8240 
Weapon System ; >30% Assembly 2.6504 3.0093 
Weapon System; 100% Assembly 3.7383 3.9904 
Weapon System; Physical Code Count; >70% HOL 0.6357 0.7350 
Weapon System; Code Count Unknown; >70% HOL 1.3238 1.6763 
Weapon System; Logical Code Count; Phasing  Unknown; >70% HOL 1.3360 1.8597 

Table 6-7:  Summary of Top-Level Productivity Factors 
 
6.5  CONCLUSIONS 
 
Since these factors were developed from a non-normalized data set, their weaknesses are 
much greater than their strengths.  Analysts should make every effort possible to obtain 
contractor-specific data and to sufficiently define the program so that the use of these factors is 
truly a last resort.  For example, if the size of the program being estimated is provided in 
physical SLOC, then historical programs which have collected metrics in physical SLOC should 
be obtained and used.  Specific strengths and weaknesses of the top-level productivity factors 
are discussed below: 
 
6.5.1  STRENGTHS 
 
The strengths associated with the top-level factors are: 
 
1) Language, mission and code condition (through the use of total SLOC and ESLOC) are 

recognized productivity drivers in every factor.   

2) Separate factors exist for programs written primarily in Assembly and HOL and separate 
factors exist for MIS and weapon system programs. 

 
3) The factors can be applied to both CSCI- and program-level data. 
 
6.5.2  WEAKNESSES 
 
The weaknesses associated with the top-level factors are: 
 
1) Mode is a productivity driver, yet it is not addressed in any factor with the exception of the 

physical code counting convention factors (which were developed from data sets consisting 
entirely of embedded programs).  The physical code counting convention factor may 
overestimate effort if applied to non-embedded mode programs.  All of the remaining factors 
are based on a mixture of embedded and non-embedded mode programs.  These factors 
may underestimate effort if applied to 100 percent embedded mode programs, and 
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overestimate effort if applied to 100 percent non-embedded mode programs.  However, 
programs are typically composed of both embedded and non-embedded CSCIs.  If the 
factors must be utilized, NCCA suggests that the mode composition of the data set 
underlying the factor be thoroughly examined to determine if the mode of the program being 
estimated is analogous. 

 
2) Phasing is a productivity driver, yet phase-specific data sets were not used to develop any 

of the factors.  This means that the factors may underestimate or overestimate productivity, 
depending on how the phasing of the program being estimated compares to the phasing of 
the programs underlying the factor.  If the top-level factors must be utilized, NCCA suggests 
that the phasing composition of the underlying data set used to develop the applicable factor 
be thoroughly examined to determine if the phasing of the program being estimated is 
analogous. 

 
3) The factors were developed from data sets containing some programs where the hours per 

man-month rate was unknown.  A 152-hours per man-month rate was assumed for these 
programs.  This adds additional uncertainty to the factors, since the productivity of those 
programs was overestimated or underestimated if the actual hours per man-month utilized 
was less than or greater than 152.  If the top-level factors must be utilized, NCCA suggests 
that the hours per man-month of the data set used to develop the applicable factor be 
thoroughly examined to determine if the hours per man-month rate for the program being 
estimated is analogous. 

 
4) Factors are not contractor specific.  As with the normalized standard NCCA regressions, 

NCCA recommends that analogous contractor-specific data be obtained to minimize 
variances. 

 
5) Due to lack of data, there is no tool to estimate MIS programs sized by a physical code 

count, or MIS programs written entirely in Assembly (although this type of program is highly 
unlikely). 

 
6) Use of these factors generates a significant amount of uncertainty since they are non-

normalized and have large CVs. 
 
As stated previously, these top-level productivity factors should be applied if, and only if, 
contractor specific data does not exist and the program being estimated does not satisfy 
NCCA’s standard regression normalization criteria.



 

 

 
EFFORT ANALYSIS: 

OVERALL PROCESS 
 
 
NCCA’s recommended effort estimating process (illustrated in detail in Figure 7-1) consists of 
four major steps. 
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Figure 7-1:  Effort Estimating Process

Step 1:  Determine whether tailored or standard tools will be utilized. 
 

• If contractor-specific data exists, assess the quality and applicability of the data, normalize 

7 
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the data and develop tailored (contractor- or domain-specific) tools following the processes 
discussed in Sections 4-6.52 

 

• If contractor-specific data is unavailable, proceed to Step 2. 
 
Step 2:  Determine whether NCCA standard regressions or factors will be utilized. 
 
If the program’s 
 
  Domain is weapon system, 
  Counting convention is logical, 
  Development language is an HOL, 
  Development phases span SDR through FQT, 
  Code condition is known,  
  Development mode is known, and 

Hours per man-month rate is known, 
 
then the program satisfies NCCA’s normalization criteria and NCCA standard regressions 
should be used as follows: 
 

• If the program being estimated is 100 percent new, apply the following equation (revised 
traditional program-level equation with the 100 percent new dummy variable enabled) at the 
program-level: 

 
Revised Traditional Program-Level Equation 
Effort = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)] 

R2 = 0.96   Std Error = 0.42   Predict (20) = 58%   N = 31  Range = 9 - 1,113 EKSLOC 
where D1 equals one if the program is embedded and zero otherwise. 

 

• If the program being estimated has greater than or equal to 82 percent reused code, 
apply the following equation (revised traditional program-level equation with the percent 
reused variable enabled) at the program-level: 

 
Revised Traditional Program-Level Equation 

  Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)]  
R2 = 0.96   Std Error = 0.42  Predict (20) = 58%   N = 31  Range = 9 - 1,113 EKSLOC 

where D1 equals one if the program is embedded and zero otherwise. 
 

• If the program being estimated is neither 100 percent new nor greater than or equal to 82 
percent reused code, and the reused code is evenly distributed between modified and 
verbatim code, apply the following equation (revised traditional program-level equation) at 
the program-level: 

 
                                                 
52As depicted in Figure 5-1, if contractor-specific data is available, the analyst should develop “tailored” regressions, vice utilizing the 
NCCA standard regressions.  This data should also be added to the NCCA Database using the procedures referenced in Chapter 2 
- Defining the Problem and provided in Appendix A, NCCA Historical Software Data Request Form’s Mapping Procedures. 
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Revised Traditional Program-Level Equation 
Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)] 

R2 = 0.96   Std Error = 0.42  Predict (20) = 58%   N = 31   Range = 9 - 1,113 EKSLOC 
where D1 equals one if the program is embedded and zero otherwise. 

 

• If the program being estimated is neither 100 percent new nor greater than or equal to 82 
percent reused code, and the reused code is predominantly verbatim, apply the following 
equation (traditional CSCI-level equation) at the CSCI-level: 

 
Traditional CSCI-Level Equation  

Effort = 0.023 * [New SLOC + (0.03 * Reused SLOC)][0.8609 + (0.0315 * D1) + (0.0529 * D2)]  
R2 = 0.77 Std Error = 0.67 Predict (20) = 26%  N = 97 Range = 0.4 - 253.4 EKSLOC 

where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise 

 
If the program does not satisfy NCCA’s normalization criteria, then NCCA standard productivity 
factors should be utilized as follows: 
 
If the program is MIS, and 
  1)  code condition is unknown, productivity = 0.6913 hrs/Total SLOC 
  2)  code condition is known, productivity = 0.8240 hrs/ESLOC; Efactor = 0 
 
If the program is written significantly (>30%) in Assembly, and 
  1)  code condition is unknown, productivity = 2.6504 hrs/Total SLOC 
  2)  code condition is known, productivity = 3.0093 hrs/ESLOC; Efactor = 0.6 
 
If the program is written entirely in Assembly, and 
  1)  code condition is unknown, productivity = 3.7383 hrs/Total SLOC 
  2)  code condition is known, productivity = 3.9904 hrs/ESLOC; Efactor = 0.69 
 
If the counting convention is physical, and 
  1)  code condition is unknown, productivity = 0.6357 hrs/Total SLOC 
  2)  code condition is known, productivity = 0.7350 hrs/ESLOC; Efactor = 0 
 
If the counting convention is unknown, and 
  1)  code condition is unknown, productivity = 1.3238 hrs/Total SLOC 
  2)  code condition is known, productivity = 1.6763 hrs/ESLOC; Efactor = 0.12 
 
If the counting convention is logical, but phasing is unknown, and 
  1)  code condition is unknown, productivity = 1.3360 hrs/Total SLOC 
  2)  code condition is known, productivity = 1.8597 hrs/ESLOC; Efactor = 0.04 
 
Step 3:  Analyze results for reasonableness. 
Step 4:  Consider other conditions that may affect productivity (such as those discussed in the 
NCCA issue papers). 
 
As discussed above, NCCA’s recommended effort estimating process requires the analyst to 
apply standard regressions or factors if contractor specific data is not available.  Table 7-1 
compares the performance of these standard regressions and factors.  The same database 
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used in Section 5 - Effort Analysis:  Normalized Regressions is displayed; however, in this 
case, the appropriate cost estimating tool is applied (i.e., if the program was written in 
Assembly, then the Assembly factor was utilized).  The regressions clearly outperform the 
productivity factors (Predict (20) equals 88 percent for regressions versus seven percent for 
factors, and the corresponding MAD equals 13 percent for regressions versus 73 percent for 
factors).  Hence, the factors should only be used as a last resort in any cost estimating 
scenario. 
 
 

Table 7-1:  Regression versus Factor Performance

Overall Software Development Cost Estimating Comparison

PROGRAM TOTAL NEW NOT NEW MOD NCCA ACTUAL
NAME LOC LOC LOC LOC METHODOLOGY USED ESTIMATE EFFORT DELTAS NOTES

NCCA-067 11,036 11,036 0 0 Physical Count Prod Factor 53 27 95.90% From Navy Internal Data, Count was physical 
NCCA-286 134,700 134,700 0 0 Top level Prod Factor 1,486 2,563 -42.00% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-287 57,000 57,000 0 0 Top level Prod Factor 629 1,720 -63.50% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-291 58,504 8,893 49,611 2,223 Top Level CSCI CER w 100% new & Emb dummies 76 73 4.80% From SEL, Included in normalized DB 
NCCA-315 74,770 37,759 37,011 8,075 Logical Count, Unknown Phases Prod. Factor 480 164 192.70% Actual effort does not include requirments 
NCCA-347 95,120 95,120 0 0 Logical Count, Unknown Phases Prod. Factor 1,164 642 81.30% Actual effort does not include requirements 
NCCA-367 114,361 99,952 14,409 10,407 Top Level Program (Revised) 493 497 -0.70% From SEL, Included in normalized DB 
NCCA-409 204,000 163,200 40,800 15,503 Top Level CSCI CER w 100% new & Emb dummies 1,326 1,231 7.70% Mitre Non-Ada DB, Included in normalized DB 
NCCA-410 185,600 30,253 155,347 155,347 Top Level Program (Revised) 380 335 13.50% Mitre Non-Ada DB, Included in normalized DB 
NCCA-411 210,000 40,000 170,000 20,000 Physical Count Prod Factor 193 154 25.90% From Navy Internal Data, Count was physical 
NCCA-417 231,870 231,870 0 0 Top Level Program (Revised) 4,979 5,103 -2.40% Mitre Non-Ada DB, Included in normalized DB 
NCCA-418 234,130 144,458 89,672 0 Top Level CSCI CER w 100% new & Emb dummies 1,252 2,350 -46.70% Mitre Non-Ada DB, Included in normalized DB 
NCCA-422 254,142 158,036 96,106 96,106 Logical Count, Unknown Phases Prod. Factor 1,981 4,421 -55.20% From SMC DB, Evolutionary Program 
NCCA-425 263,179 263,179 0 0 Top level Prod Factor 2,902 5,244 -44.70% From Silver DB, From Silver DB,From Silver DB,
NCCA-427 267,900 98,587 169,313 0 Top level Prod Factor 1,311 864 51.90% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-428 283,500 245,511 37,989 0 Top level Prod Factor 2,758 1,944 41.80% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-431 334,704 334,704 0 0 >30% Assembly Prod Factor 6,626 7,592 -12.70% Mitre Non-Ada DB, Included in normalized DB 

NCCA-435 338,088 157,887 180,201 180,201 >30% Assembly Prod Factor 5,266 1,850 184.70% Mitre Non-Ada DB, Included in normalized DB 
NCCA-441 422,552 422,552 0 0 Logical Count, Unknown Phases Prod. Factor 5,170 2,920 77.10% Program was concept exploration 
NCCA-454 1,113,000 556,500 556,500 556,500 Top Level Program (Revised) 9,637 10,976 -12.20% Mitre Non-Ada DB, Included in normalized DB 
NCCA-456 1,420,872 1,406,663 14,209 14,209 Physical Count Prod Factor 6,802 4,652 46.20% From Navy Internal Data, Count was physical 
NCCA-458 1,997,934 933,575 1,064,359 0 Top Level CSCI CER w 100% new & Emb dummies 9,587 8,193 17.00% From Navy Internal, Included in normalized DB 

MAD 50.90%
 P(20) 36.40%   General Methodology

%Above 0 59.10%
%Below 0 40.90%

P(20) 87.50%
MAD 13.10%   CER portion of Methodology
%Above 0 62.50%
%Below 0 37.50%

P(20) 7.10%
MAD 72.50% Productivity Portion of Methodology
%Above 0 71.40%
%Below 0 28.60%



 

 

 
 

SCHEDULE ANALYSIS 
 
 

8.1  INTRODUCTION  
 
The purpose of this section is to describe the methodology and procedures used to develop a 
software schedule estimating tool.  In recent years, the importance of the software development 
schedule has increased because it is often on the critical path in weapon system developments.  
However, software schedule estimates tend to be optimistic, with programs typically 
experiencing between 20 and 60 percent schedule growth.  Typical reasons for schedule growth 
include changes in requirements, unrealistic project planning, and staffing problems.  
Regardless of the reason for the delay or slip in schedule, it will ultimately result in cost growth. 
 
NCCA has developed both top-level factors and schedule estimating relationships that estimate 
schedule in months.  The methodology and recommended approaches are addressed below.  
However, these recommended approaches should only be used when additional analogous or 
contractor specific data are not available.  The following subsections will describe the schedule 
analysis: 
 

• NCCA Schedule Databases 
• Methodology and Results 
• Recommendations 
• Conclusions 
• Future Efforts 

 
8.2   NCCA SCHEDULE DATABASES 
 
Similar to the effort databases, NCCA created a separate schedule database to support 
schedule analyses.  The detailed methodology will be provided below.   
 
8.2.1  GROUND RULES AND ASSUMPTIONS 
 
The general ground rules and assumptions followed to create the NCCA Schedule Database 
are: 
 
1) Only program-level data points were used for the NCCA Schedule Database. 
2) The schedule dates were assumed to be the midpoint of the month. 
3) All SLOC are logical code. 
4) All programming languages, except Assembly, were defined as HOL. 
 
 
 

8 
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8.2.2  RAW SCHEDULE DATABASE 
 
The NCCA Raw Schedule Database is a subset of the NCCA Raw Database detailed in Section 
3 - Software Database.  A record in the NCCA Raw Database contains 73 data fields; however 
only 48 of the 73 data fields were used in the NCCA Raw Schedule Database.  Of the 48 data 
fields, the following fields (see Section 3 – Software Database for definitions) were 
predominantly used: 
 
  1)  Program name 
  2)  Platform 
  3)  Program- or CSCI-level 
  4)  Size (total SLOC) 
  5)  Programming language 
  6)  Effort expended (man-months) 
  7)  Duration (total schedule in calendar months) 
  8)  Acquisition period 
  9)  Code counting convention 
10)  Software development phase 
 
A query of the NCCA Raw Database (references [5] through [7]) was performed and a total of 
151 program-level data points, which included schedule as well as effort, were obtained.  These 
151 data points were screened to identify those having schedule dates from SDR through FQT.  
Thirty-seven of the 151 points met this criterion and were retained.  These data points 
constituted the NCCA Raw Schedule Database. 
 
The 37 data points were a mixture of HOL and Assembly language programs.  The mission 
types included C3, radar, missile, ASW, and simulation programs installed on air, ship, and 
ground platforms.  The total SLOC ranged from 2.3 to 1,113 KSLOC and total development 
effort ranged from 11 to 10,976 man-months.  The associated schedule ranged from 5 to 74 
months, with a mean schedule of 27.9 months.  
 
See Appendix E for a description of the data points in the NCCA Raw Schedule Database. 
 
8.2.3  NCCA NORMALIZED SCHEDULE DATABASE 
 
The 37 data points in the NCCA Raw Schedule Database were then screened to obtain the 
NCCA Normalized Schedule Database.  The criteria for the NCCA Normalized Schedule 
Database were:  1) the effort occurred from SDR through FQT and 2) the hours per man-month 
were known and converted to 152 hours per man-month.  One data point was eliminated 
because the hours per man-month rate was unknown.  Four additional points were deleted 
because the effort included the SIT phase or the OTE phase, which are outside the SDR 
through FQT scope of effort.  Finally, 16 additional data points were deleted because the 
Software Requirements Analysis Phase (SDR-SSR) was not included in the effort, leaving 16 
normalized data points (i.e., effort and schedule from SDR through FQT). 
 
The 16 normalized data points, see Appendix E, were a mixture of HOLs (e.g., Fortran, Jovial, 
CMS-2) and Assembly language programs.  However, none of the programs were written in 
Ada.  The mission types are characterized as C3, radar, and simulation programs, which were 
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installed on air, ship, and ground platforms.  The total SLOC ranged from 20 to 1,113 KSLOC, 
and total development effort ranged from 157 to 10,976 man-months.  The associated schedule 
ranged from 12 to 74 months.  The mean schedule was 33 months. 
 
Figure 8-1 shows the filtering process that resulted in the NCCA Raw Schedule and NCCA 
Normalized Schedule Databases used in developing the software schedule regressions. 
 

Schedule not
SDR to FQT      114

Program Level
151

Schedule
SDR to FQT      37

NCCA Raw Schedule Database

Effort  Hrs/MM
Unknown       1

Effort  Hrs/MM
Known       36

Effort contains
SIT/OTE       4

Effort doesn’t contain
SIT/OTE              32

Effort
SDR to FQT     16

Schedule and Effort
 SDR to FQT     16

Normalized Database

 
Figure 8-1:  NCCA Schedule Databases 

 
Since the NCCA Normalized Schedule Database was small (N = 16), the Mann-Whitney U test, 
a non-parametric test, was performed to determine if the non-normalized and normalized data 
points could be combined.  The Wilcoxon Two-Sample test was performed to determine 
whether the data points within the NCCA Normalized Schedule Database should be separated 
due to language or mode differences.  Essentially, these non-parametric tests compared and 
tested the means of both samples to determine if they were from the same population and 
could, be combined into one database.  Additional information about these non-parametric tests 
is available in Appendix C and references [14] and [19]. 
 
The results of the Mann-Whitney U Test indicated that non-normalized and normalized data 
points should not be combined.  Results of this test are found in Appendix E. 
 
The Wilcoxon Two-Sample test was performed on the NCCA Normalized Schedule Database 
(N = 16).  The results indicated that the HOL and Assembly language data points should remain 
combined.  Results of this test are found in Appendix E. 
 
The Wilcoxon Two-Sample test was also performed on the NCCA Normalized Schedule 
Database to determine if the two semi-detached programs and 14 embedded programs were 
from the same population.  Even though there were so few data points, the results indicated that 
the semi-detached and embedded programs could remain combined.  Results of this test are 
found in Appendix E. 
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Based on the non-parametric test results summarized above, the final NCCA Normalized 
Schedule Database consisted of all 16 data points, with HOL and Assembly languages and 
semi-detached and embedded modes combined.  This database was used to develop the 
factors and schedule estimating relationships.  The NCCA Normalized Schedule Database is 
shown in Table 8-1. 
 

Record Platform Type Mission Area Lang1 Total SLOC Total Man-Months Total Months 
NCCA-146  Radar CMS-2 20,276 241 32 
NCCA-183 Ground C3 EDL 26,200 289 28 
NCCA-284  C3 Fortran 56,021 157 17 
NCCA-298 Ground C3 Assembly 63,944 469 12 
NCCA-360  C3 Fortran 102,806 1222 32 
NCCA-390  C3 Fortran 139,527 586 25 
NCCA-404 Ground SIM ? 169,000 704 21 
NCCA-409 Ship Radar Jovial 185,600 335 25 
NCCA-410 Ship Radar Jovial 204,000 1231 32 
NCCA-417 Ground C3 CMS-2 231,870 5103 74 
NCCA-418  Radar Jovial 234,130 2350 39 
NCCA-426 Air C3 Fortran 263,992 6496 42 
NCCA-429 Air C3 Assembly 285,400 1326 22 
NCCA-431  C3 Assembly 295,196 7592 70 
NCCA-435  C3 Fortran 338,088 1850 21 
NCCA-454  C3 Jovial 1,113,000 10976 40 

Table 8-1:  NCCA Normalized Schedule Database 
 
 
The primary strength of the NCCA Normalized Schedule Database is that it includes only 
programs that had effort and schedule from SDR through FQT.  Another strength is that the 
schedule range is robust; it includes programs ranging from one to six years, 20 to 1,113 
KSLOC and various mission types, including both C3 and radar systems.  The weaknesses 
include:  1) 14 of the 16 data points’ are embedded mode; 2) there are no Ada data points; 3) 
the data points represent older programs (late 1970s through mid-1980s); and 4) the data points 
are extracted from only one source database (MITRE Non-Ada Database).   

 
8.3  METHODOLOGY AND RESULTS 
 
Using the NCCA Normalized Schedule Database, two analytical approaches (factors and 
equations) were investigated. 
 
8.3.1  APPROACH ONE 
 
To develop factors, the mean and median statistics for schedule in total calendar months, effort 
in total MM, and size in KSLOC were calculated.  Appendix E contains the non-parametric tests 
performed on these data sets.  Table 8-2 shows the results.  The means and medians were 
then utilized to partition the database (e.g., programs less than or equal to the median KSLOC 
versus programs greater than the median KSLOC).  As shown in Table 8-3, the mean schedule 
in months, the Predict (20) and the associated CVest were calculated for each partition.  (See 
Appendix C for a discussion of the CVest calculation and Appendix E for supporting 
spreadsheets.)  The recommended schedule estimating approach was selected based on the 
partition that minimized the CV or CVest. 
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Months Range = 12 to 74  Mean = 33 Months 
  Median = 30 Months 

KSLOC Range = 20 to 1,113  Mean = 233 KSLOC 
  Median = 195 KSLOC 

Man-Months Range = 157 to 10,976 Mean = 2558 MM 
  Median = 1227 MM 

Table 8-2:  NCCA Normalized Schedule Database Partitions 
 

 Partitions N Mean (Months) CVest PREDICT (20) 
1 All Programs  16 33 0.54 0.38 
 Programs ≤ 233 KSLOC (Mean KSLOC) 10 30   
2    0.52 0.56 
 Programs > 233 KSLOC (Mean KSLOC) 6 39   
 Programs ≤ 195 KSLOC (Median KSLOC) 8 24   
3    0.45 0.44 
 Programs > 195 KSLOC (Median KSLOC) 8 43   
 Programs ≤ 1227 MM (Median MM) 8 24   
4    0.45 0.44 
 Programs > 1227 MM (Median MM) 8 43   
 Programs ≤ 2558 MM (Mean MM) 12 26   
5    0.32 0.50 
 Programs > 2558 MM (Mean MM) 4 57   

Table 8-3:  Statistical Results of Partitions  
 

Partition 5 has the smallest resulting CVest and the following results: 
 

1)  For programs with Estimated Effort ≤ 2558 MM:  Schedule = 26 months 
2)  For programs with Estimated Effort > 2558 MM:  Schedule = 57 months 

CVest = 32%, n = 16, Predict (20) = 50% 
 
The resulting Predict (20) indicates that 50 percent of the schedules estimated with these 
factors were within 20 percent of the actual schedules. 
 
The primary strength of the factors is the associated statistics.  The residuals of the factors 
appeared to show no bias, and the approach is simple and easy to use.  Also the factors 
broadly distinguish between large and small programs; however, the lack of sensitivity within the 
broad groupings is a primary weakness of this approach (i.e., the factors estimate the same 
schedule for a program with effort equal to 2559 man-months as they do for a program with 
effort equal to 4000 man-months).  Finally, the factors may not be good estimators for Ada data 
points because the database has no Ada data points.  However, NCCA has not found any 
documented evidence that suggests language impacts the software development schedule. 
 
8.3.2  APPROACH TWO 
 
In addition to factors, regressions were investigated.  Linear as well as exponential and power 
equations were developed with the exponential form showing the most promise.  In all of the 
regressions, the dependent variable was actual schedule expressed in calendar months.  The 
independent variables included total effort in man-months, and total SLOC, ESLOC, or 
productivity (man-months/ESLOC).  Based on the results of the analysis in Section 4 - Effort 
Analysis:  Significant Drivers, dummy variables included mode (i.e., embedded versus semi-
detached) and code condition (i.e., 100 percent new programs versus not 100 percent new 
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programs).  Additionally, NCCA developed regressions, which included various percent reused, 
and KSLOC trade-offs. 
 
NCCA analyzed the regressions and determined the most promising ones.  Only significant 
regressions (at the 95 percent confidence level) were considered.  The list of non-significant 
equations and their associated statistics is shown in Appendix E.  The following six significant 
normalized equations remained.  They are divided into the following categories:  1) traditional 
equations, where software schedule is a function of estimated effort in man-months and 2) non-
traditional equations, where schedule is a function of estimated size in ESLOC.  Similar to the 
effort analysis (Sections 4 through 7), NCCA quantitatively solved for the Efactor which 
converted reused code to equivalent new code, while minimizing the standard error.  Appendix 
E contains the regression plots and residual analyses for equations [8-1] through [8-6].   
 

Traditional Equations:  Actual Schedule = ƒ(Estimated Effort) 
 

Schedule (Months) = 4.87 * (MM)0.2556  
R2 = 0.50; CV = 0.35; Predict (20) = 44%; Range = 241 - 10,976 MM 

 
Schedule (Months) = 5.12 * (MM)0.2266 * e(0.3574 * D1) 

R2 = 0.64; CV = 0.31; Predict (20) = 44%; Range = 241 - 10,976 MM 
where dummy variable D1 = 1 for programs 100% New and 0 otherwise 

 
Schedule (Months) = 6.50 * (MM)0.2320 * e (-03883 * D1) 

R2 = 0.65; CV = 0.30; Predict (20) = 50%; Range = 241 - 10,976 MM 
where dummy variable D1 = 1 for programs with %Reuse > 39% and 0 otherwise 

    
Schedule (Months) = 5.01 * (MM)0.3205 * e (-0.5580 * D1) 

R2 = 0.63; CV = 0.31; Predict (20) = 56%; Range = 241 - 10,976 MM 
where dummy variable D1 = 1 for programs with KSLOC > 30 and 0 otherwise 

 
 

Non-Traditional Equations:  Actual Schedule = ƒ(Estimated ESLOC) 
 

Schedule (months) = 2.16 * (ESLOC)0.2270  
R2 = 0.28; CV = 0.42; Predict (20) = 44%; Efactor = 0; Range = 20 - 557 KSLOC 

 
  Schedule (Months) = 1.32 * (ESLOC)0.2439 * e (0.5389 * D1) 

R2 = 0.52; CV = 0.35; Predict (20) = 50%; Efactor = 0.52; Range = 20 - 557 KSLOC 
where dummy variable D1 = 1 for programs 100% new and 0 otherwise 

 
Equations [8-3] and [8-4] had the best statistical attributes of the six equations.  However, upon 
a more detailed analysis of equation [8-3]’s residuals, it appears that the regression is biased.  It 
consistently overestimated the very small and very large points, and consistently 
underestimated those in between.  Thus, this equation was eliminated from further 
consideration.  Equation [8-4]’s dummy variable is based on only two data points (i.e., there are 
only two data points with SLOC less than 30,000), so it was also eliminated from further 
consideration. 
 
 

[8-1] 

[8-2] 

[8-3] 

[8-5] 

[8-6] 

[8-4] 



Section 8 - Schedule Analysis 
 

8 - 7 

Of the remaining four equations, equation [8-2], the traditional schedule estimating equation with 
a 100 percent dummy variable had the best statistical attributes.  A review of the residuals 
uncovered no apparent bias.  Furthermore, equation [8-2] generates estimates that are 
comparable to those produced by other traditional schedule estimation models (e.g., COCOMO, 
REVIC, etc.).  Table 8-4 compares the equation [8-2] estimate and several other models’ 
estimates for a 100 man-month effort.  The average schedule estimate for the first 11 models in 
this example is 15 months.  The schedule estimates ranged from 10 to 21 months.  Barry 
Boehm’s latest COCOMO II schedule equation, which incorporates the latest software methods 
(unlike the first 11), estimates the schedule for the 100 man-months effort between 14 and 17 
months.  Equation [8-2] resulted in an estimate of 15 months (assuming the program is not 100 
percent new) or 21 months (assuming the program is 100 percent new).  These results were 
comparable to the range of estimates generated by the other estimating models.  Additionally, 
equation [8-2] captured one of the significant drivers (i.e., code condition) highlighted in Section 
4 - Effort Analysis:  Significant Drivers. 
 

Reference Equation Schedule Months53 
Freburger and Basili, 1979 TDEV = 4.38 * (MM)0.25 14 
COCOMO:  Embedded Mode TDEV = 2.5 * (MM)0.32 11 
Putnam, 1978:  Minimal Schedule TDEV = 2.15 * (MM)0.333 10 
COCOMO:  Semi-detached Mode TDEV = 2.5 * (MM)0.35 13 
Walston and Felix, 1977 TDEV = 2.47 * (MM)0.35 12 
Nelson, 1978 TDEV = 3.04 * (MM)0.36 16 
COCOMO:  Organic Mode TDEV = 2.5 * (MM)0.38 14 
REVIC:  Ada Mode TDEV = 4.376 * (MM)0.32 19 
REVIC:  Organic Mode TDEV = 3.65 * (MM)0.38 21 
REVIC:  Semi-detached Mode TDEV = 3.8 * (MM)0.35 19 
REVIC:  Embedded Mode TDEV = 4.376 * (MM)0.32 19 
 Average =  15 
COCOMO 2.0 TDEV = [3.0 * (MM) (0.33 + 0.2 * (B - 1.01))] * (%Schedule/100)54 14 to 17 
Equation [8-2] TDEV = 5.12 * (MM)0.2266 * e (D

1 * 
0.3574) 15 or 21 

Table 8-4:  Comparison of Equation [8-2] to Other Traditional Schedule Estimation Models 

 
8.4  RECOMMENDATIONS 
 
The factors derived from Partition 5 in Table 8-3 and the traditional equation [8-2] have similar 
statistics, but the traditional equation [8-2] is slightly better.  This fact combined with the 
insensitivity of the factors (i.e., they estimate the same schedule for a program with effort equal 
to 2559 man-months as they do for one equal to 4000 man-months), leads NCCA to 
recommend using equation [8-2]: 
 
 
   Schedule (Months) = 5.12 * (MM)0.2266 * e (0.3574 * D1) 

R2 = 0.64; CV = 0.31; Predict (20) = 44%; Range =157 - 10,976 MM 
where dummy variable D1 = 1 for programs 100% new and 0 otherwise 

 
                                                 
53Estimate based on effort estimate of 100 man-months. 
54Where B = 1.01 or 1.26 based on the COCOMO 2.0 documentation. 

[8-2] 
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Figure 8-2 illustrates the software schedule estimating process. 
 

Figure 8-2:  Recommended Software Schedule Estimating Process 
 
8.5  CONCLUSIONS 
 
A schedule estimate is an important aspect in developing a software estimate because it 
impacts both the effort required and the program risk.55  In this section, two schedule estimating 
methodologies (factors and estimating relationships) were developed to estimate schedule.  
These tools are based on a relatively small database of programs from one data source.  
Therefore, they may not reflect an industry average and should be used with caution.  Although 
these factors and equations were developed from a small database, the statistics associated 
with the recommended tool are satisfactory and the underlying database represents a wide 
range of program sizes.  Because software schedules are often influenced by external factors 
such as budget cuts or requirements creep, they will remain difficult to estimate.  However, 

                                                 
55Refer to the NCCA Issue Paper “The Impacts of Schedule Compression/Slippage/Stretch-Out on the Software Development 
Schedule” for a discussion of this topic. 
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NCCA has identified several parameters which impact schedule, and which should be 
considered when developing a software development schedule estimate.  As with the effort 
analysis, NCCA’s recommendation is that this methodology be used only when contractor-
specific data, appropriate for developing tailored equations, is not available. 

 
8.6  FUTURE EFFORTS 
 
A future goal is to collect additional data to improve schedule regressions.  The NCCA 
Normalized Schedule Database would be improved if the following data were collected: 
 
1) Elapsed time between effort phases. 
2) Dates for software-related reviews and phases. 
3) MIS program schedule data.



 

 

 

LABOR RATE ANALYSIS 
 
 

9.1  INTRODUCTION 
 
This section of the handbook delineates how NCCA collected, analyzed, and normalized Cost 
Performance Report (CPR) and Contractor Cost Data Report (CCDR) data for use in developing 
an effort-to-cost/price estimating methodology and tool.  The methodology used to develop the 
effort-to-cost estimating tool is described in the following subsections: 
 

• NCCA Labor Rate Databases 
• Methodology and Results 
• Recommendations 
• Conclusions 
• Additional Considerations 
• Future Efforts 

 
9.2  NCCA LABOR RATE DATABASES 
 
NCCA also created a separate labor rate database to support the development of software 
specific man-year rate analyses.  The detailed methodology will be discussed below. 
 
9.2.1  GROUND RULES AND ASSUMPTIONS 
 
Provided below are the ground rules and assumptions utilized to develop the NCCA Labor Rate 
Databases: 
 
1) NCCA retained only those programs (or data points) that were at least 90 percent complete.  

It was assumed that a program, which has expended 90 percent of its estimate at 
completion (as portrayed in the CCDR forms) is at least 90 percent complete. 

 
2) The man-hours of effort reported for the EMD Phase covered the software development life 

cycle, defined as SDR through FQT (See Figure 3-3). 
 
3) For CPR data points that reported effort in man-months, NCCA assumed a 152-hours per 

man-month rate for the conversion from man-months to hours. 
 
4) Since DoD-STD-2167A went into effect in 1985, NCCA made the assumption that contracts 

awarded prior to 1985 were pre-DoD-STD-2167A and contracts awarded in 1985 and after 
were post-DoD-STD-2167A.  There is the possibility, though, that a contractor received a 
waiver to utilize a previous standard after 1985. 

 
5) The software costs expended were assumed to be then-year dollars based on the year of 

the contract.  For example, if program X's contract number was N00019-88-C-0001, then 

9 
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program X's software cost was assumed to be in then-year 1988 dollars.  All labor hours 
were normalized to thousands of hours and all costs were normalized to constant FY97$K, 
using NCCA's RDT&EN (Purchases) weighted indices, dated March 1996. 

 
9.2.2  DATA SOURCES 
 
NCCA collected software cost data from CCDRs and CPRs, which provided actual cost in 
addition to other data, for the NCCA Raw Labor Rate Database.  Figure 9-1 is an example of a 
CCDR 1921 form, which reports cost-to-date, as well as, cost-at-completion estimates.  Figure 
9-2 is an example of a CCDR 1921-1 form, which reports man-hours by WBS element to date 
and at completion by functional category.  NCCA used the shaded elements from Figures 9-1 
and 9-2 for the labor rate analysis.  The most essential elements were the estimated software 
cost at completion, located on both Figures 9-1 and 9-2, and the total software labor hours 
estimated at completion found in Figure 9-2.  To cross-check, NCCA ensured the 1921 software 
at completion cost was equal to the 1921-1 software at completion cost.  
 
A CPR reports cost by WBS element.  Format 1 of a CPR (Figure 9-3) reports the top-level cost 
for the program by WBS element.  Format 4 of a CPR (Figure 9-4) reports man-months 
expended to date and at completion.  The shaded elements in Figures 9-3 and 9-4 are inputs 
into the database.  The most essential elements are the software’s latest revised estimate (LRE) 
at completion in Figure 9-3 and the estimate at completion man-months for software in Figure 9-
4. 

 

Figure 9-1:  Contractor Cost Data Report, 1921 

C O N T R A C T  C O S T  1 .   ' P R O G R A M / C O N T R A C T  N O . : 2 .   ( X )   C O N T R A C T 3 .   ( X )   R D T & E   (    )   P R O D 5.   REPORT AS OF 

D A T A  R E P O R T  ( C C D R ) EX A /C /N00019-89 -C-6083      (    )    R F P 4 .   MULT IPLE CONTRACT 30 JUNE 1989

(DOLLARS IN  THOUSANDS)      (    )    P R O G R A M  E S T (X)   YES   (    )   NO 6.   FY FUNDED:  1990

7 .   CONTRACT TYPE:  8 .   C O N T R A C T  P R I C E 9.   CONTRACT CEILING 10.  (X)   PRIME  (   )   SUB 1 1 .   N A M E  O F  C U S T O M E R  

XYZ, INC. (SUBCNTR USE ONLY)

CPIF 208,847 210,000 XYZ,  VIRGINIA

T O  D A T E AT COMPLET ION

C O N T R A C T COSTS INCURRED COSTS INCURRED

LINE R E P O R T I N G  E L E M E N T S ELEMENT NON- N O N -

ITEM C O D E R E C U R R I N G R E C U R R I N G T O T A L UNITS R E C U R R I N G R E C U R R I N G T O T A L

A B C D E F G H I J

100 H / W 2 94000 0 94000 101000 0 101000

200 S / W 2 80000 0 80000 85000 0 85000

300 ILS 2 930 0 930 1200 0 1200

M A N U F A C T U R I N G  C O S T 174930 0 174930 187200 0 187200

G&A 17493 0 17493 18720 0 18720

COM 2099 0 2099 2246 0 2246

F E E 19242 0 19242 20592 0 20592

T O T A L  P R I C E 213764 0 213764 228758 0 228758

R E M A R K S

N A M E  O F  P E R S O N  T O  B E  C O N T A C T E D S I G N A T U R E D A T E

J O E  S M I T H ,  M A N A G E R 3 JUL 89

DD FORM 1921 GO7011-02
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Figure 9-2:  Functional Cost-Hour Report, 1921-1 

FUNCTIONAL COST-HOUR REPORT 1 .  PROGRAM:   EX  A /C 2.  REPORT AS OF 

30 JUNE 1989

3.  DOLLARS IN 4.  HOURS IN 5.   (X)   CONTRACT      (    )   PROGRAM EST     (    )   RFP

THOUSANDS THOUSANDS

6.   (    )   NON-RECURRING   (    )    RECURRING   (X)   TOTAL 7.  (X)  RDT&E   (    )  PROD   (    )    OTHER

8.   MULTIPLE YEAR CONTRACT 10.   (X)   PRIME   (    )   SUBCONTRACTOR 11.   NAME OF CUSTOMER

(X)  YES   (    )   NO XYZ, INC. (SUBCNTR USE ONLY)

9.  FY FUNDED XYZ, VIRGINIA

1990

12.   REPORTING ELEMENT(S)

200 SOFTWARE

ADJUST- SUBCONTRACT OR OUT-

M E N T S  T O  CONTRACTOR SIDE PROD AND SERV T O T A L

FUNCTIONAL CATEGORIES PREVIOUS

R E P O R T S TO DATE A T  C O M P L TO DATE A T  C O M P L T O  D A T E A T  C O M P L

A B C D E F G

ENGINEERING

1.   D IRECT LABOR HOURS 1 0 0 5000 4600 5000

2.   DIRECT LABOR DOLLARS $ $                  5 0 0$         20 ,000 $ $ $          19,250 $         20,000

3.   OVERHEAD $ $                1400$         45 ,000 $ $ $         44,500 $         45,000

4 .   MATERIAL $ $                  1 0 0$            5 ,000 $ $ $           4,750 $           5,000

5.  OTHER DIRECT CHARGES (Specify) $ $                      0       $                   0 $ $ $                   0       $                  0

6.   TOTAL ENGINEERING DOLLARS $ $             2 ,  000   $          70 ,000 $ $ $         68,500 $         70,000

TOOLING

7.   D IRECT LABOR HOURS 1699 2000 1699 2000

8.   DIRECT LABOR DOLLARS $ $             3,940 $            4 ,000 $ $ $           3,940 $           4,000

9.   OVERHEAD $ $             5,550 $            6 ,000 $ $ $           5,550 $           6,000

10.   MATERIAL $ $                    0 $                   0 $ $ $                  0 $                  0

11.  OTHER DIRECT CHARGES (Specify) $ $                     0 $                   0 $ $ $                  0 $                  0

12.   TOTAL TOOLING DOLLARS $ $             9,490 $           10 ,000$ $ $           9,490 $          10,000

QUALITY CONTROL

13.   DIRECT LABOR HOURS 2 5 0 364 250 364

14.   DIRECT LABOR DOLLARS $ $                300 $               5 0 0 $ $ $              300 $              500

15.   OVERHEAD $ $                600 $             1 , 0 0 0$ $ $              600 $            1,000

16.  OTHER DIRECT CHARGES (Specify) $ $                  25 $                   0 $ $ $                25 $                  0

17.   TOTAL QUALITY CNTRL DOLLARS $ $                925 $             1 , 5 0 0$ $ $              925 $            1,500

MANUFACTURING

18.   DIRECT LABOR HOURS 6 5 0 1000 650 1000

19.   DIRECT LABOR DOLLARS $ $                600 $             1 ,000  $ $ $              600 $            1,000

20.   OVERHEAD $ $              1 ,000 $            2 ,500 $ $ $            1 ,000 $           2,500

21 .   MATRL AND PURCHASED PARTS $ $                485 $                   0 $ $ $              485 $                  0

22.  OTHER DIRECT CHARGES (Specify) $ $                     0 $                   0 $ $ $                  0 $                  0

23.   TOTAL MANUFACTORING DOLLARS $ $             2,085 $            3 ,500  $ $ $           2,085 $           3 ,500 

24 .   PURCHASED EQUIPMENT $ $                    0 $                   0 $ $ $                  0 $                  0

25.   MATERIAL OVERHEAD $ $                    0 $                   0 $ $ $                  0 $                  0

26.  Other Costs Not Shown Elsewhere $ $                    0 $                   0 $ $ $                  0 $                  0

27.  TOTAL COST LESS G&A $ $            81 ,000 $         85 ,000  $ $          81,000 $         85,000  

28.  G&A $ $              8 ,100 $            8 ,500   $ $ $            8 ,100 $           8 ,500  

29.   TOTAL COST PLUS G&A $ $            89 ,100 $         93 ,500 $ $ $          89,100 $         93,500 

30.   FEE OR PROFIT/COM $ $             9,882 $           10 ,370$ $ $           9,882 $          10,370

31.  TOTAL OF LINES 29 AND 30 $ $           98,982 $        103,870  $ $ $         98,982 $        103,870  

DIRECT LABOR MAN-HOURS INCURRED THIS REPORT PERIOD

ENGINEERING TOOLING QUALITY CONTROL MANUFACTORING

A B C D

1.  TOTAL BEG OF PERIOD

2.

3.

4.

5.

6   TOTAL END OF PERIOD

DD FORM 1921-1 GO7011-02
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Figure 9-3:  Cost Performance Report, Format 1 
 
 

Figure 9-4:  Cost Performance Report Manpower Loading Report, Format 4 

Cost Performance Report - Work Breakdown Structure

Contractor:  XYZ, INC. Contract Type/No.: Program Name: Report Period: Signature, Title & Date: FORM APPROVED BY:

Location:  XYZ, VA CPIF EX A/C 30 JUNE 1989 OMB NUMBER 00000000000000000

RDT&E (X)  PROD (   ) N00018-88-C-6083

Quantity Negot. Est Cost Auth TGT PRFT/ TGT Est Price: Share Ratio: Contract Ceiling: Est Ceiling:

Cost: Unpriced Work FEE PCT Price:

209,110 0 11% 0 0 0%/100% 210,000 0

CURRENT CUMULATIVE TO DATE AT COMPLETION

WBS BUDGETED COST ACTUAL VARIANCE BUDGETED COST ACTUAL VARIANCE LATEST

EX/AC WORK WORK COST WORK WORK WORK COST WORK REVISED

SCHED PERF PERF SCHED COST SCHED PERF PERF SCHED COST BUDGET ESTIMATE VARIANCE

WBS

100 H/W 2502 1349 3172 -1153 -1823 100000 96000 94000 -4000 2000 96500 101000 4500

200 S/W 3000 2000 3500 -1000 -1500 82000 81000 80000 -1000 1000 75500 85000 9500

300 ILS 200 100 250 -100 -150 1000 950 930 -50 20 975 1200 225

FACTORY COST 5702 3449 6922 -2253 -3473 183000 177950 174930 -5050 3020 172975 187200 14225

COST OF MONEY 68 41 83 -27.036 -42 2196 2135 2099 -60.6 36.24 2076 2246 170.7

GEN AND ADMIN 570 345 692 -225.3 -347 18300 17795 17493 -505 302 17298 18720 1422.5

UNDISTRIBUTED BUDGET

SUBTOTAL 6341 3835 7697 -2505 -3862 203496 197880 194522 -5616 3358 192348 208166 15818

PROFIT 627 379 761 -248 -382 20130 19575 19242 -556 332 19027 20592 1565

UNASSIGNED FUNDS

TOTAL 6968 4215 8459 -2753.166 -4244 223626 217455 213764 -6171.1 3690.4 211375 228758 17382.95

(DOLLARS IN THOUSANDS)

FORMAT 1

C O S T  P E R F O R M A N C E  R E P O R T  -  M A N P O W E R  L O A D I N G

CONTRACTOR:   XYZ,  INC.C O N T R A C T  T Y P E / N U M B E R : P R O G R A M  N A M E : REPORT PERIOD: F O R M  A P P R O V E D  B Y :

LOCATION:   XYZ,  VA C P I F E X  A / C 30  JUNE 1989 O M B  N U M B E R  

R D T & E  ( X )   P R O D  (    ) N00018-88-C-6083 00000000000000000

ACTUAL FORECAST (NON-CUMULATIVE)

ORGANIZAT IONAL A C T U A L  END OF S I X  M O N T H  F O R E C A S T  B Y  M O N T H

OR FUNCTIONAL C U R R E N T C U R R E N T ( E N T E R  N A M E S  O F  M O N T H ) (Enter Specified Periods)

C A T E G O R Y PERIOD P E R I O D AT

( C U M ) M A R A P R M A Y JUN JUL AUG EOY87 CY88 1989-90 C O M P L E T I O N

100 H/W 31 3475 62 23 17 11 6 11 51 28 0 3684

200 S / W 241 7199 211 156 148 162 98 82 179 121 8 8364

300 ILS 36 719 20 15 12 12 12 11 59 160 48 1068

TOTAL DIRECT 308 11393 293 194 177 185 116 104 289 309 56 13116

ALL F IGURES IN  WHOLE NUMBERS F O R M A T  4
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9.2.3 RAW LABOR RATE DATABASE 
 
NCCA collected cost and manning data for 34 software efforts.  The software cost data was in 
then-year dollars, including G&A, and the manning data is in man-hours or man-months.  Table 
9-1 lists all of the data points collected for the software labor rate analysis.  These data points 
met the initial criterion for database inclusion, which means they reported software cost.  After 
scrutiny of the data points, some programs, as shown in the shaded areas of Table 9-1, were 
excluded from the database for one of the following reasons: 
 
1) Man-hours were not reported. 
2) Software development effort did not include the requirements phase. 
3) Software development effort experienced major problems, (i.e., flight test failures). 
4) Programs were less than 90 percent complete. 
 

 Program Labor Hours  Status of Completion 
1 A-6E Upgrade not provided  
2 AAAM not provided  
3 AAAM Provided  
4 AAAM Provided  
5 AAAM (D&V) not provided  
6 ALFS provided Less than 90 percent complete 
7 AMRAAM AIM-120A not provided  
8 AMRAAM SYS provided  
9 AN/ALR-67 provided Less than 90 percent complete 
10 AN/ALR-77 not provided  
11 APG-71 F-14D provided  
12 APG-73 RADAR provided  
13 AQM-127A provided, s/w failure  
14 ASPJ provided, effort < requirements  
15 ASPJ provided, effort < requirements  
16 BSY-1 provided Less than 90 percent complete 
17 BSY-1 provided  
18 BSY-1 provided  
19 BSY-2 provided  
20 CASS provided  
21 CEC Provided  
22 E-2C GRP2, PT2 not provided  
23 ES-3A PROTOTYPE Provided  
24 F-14A & F-14D Provided  
25 F-18 FSD not provided  
26 F/A-18 OTPS Provided Less than 90 percent complete 
27 HARM-CLCP Provided  
28 JSOW Provided  
29 MHIP Provided  
30 P-3UPD IV Provided Less than 90 percent complete 
31 S-3A  not provided  
32 S-3B not provided  
33 SMIP LOW not provided  
34 SPAR/AIM/RIM-7P not provided  

Table 9-1:  NCCA Raw Software Labor Rate Database 
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9.2.4  NCCA NORMALIZED LABOR RATE DATABASE  
 
The final sanitized,56 normalized software NCCA Labor Rate Database has 15 programs with 10 
data fields as shown in Table 9-2.  The man-hours expended to develop the software range 
from 2K to 793K labor hours and the software costs through G&A range from $317K to $95M in 
constant FY97$.  The NCCA Normalized Labor Rate Database's population consists of aircraft, 
ships, missiles and electronics programs, representing cost-plus and fixed-price contracts.  The 
East Coast contractors are located from Rhode Island to Florida.  The West Coast contractors 
are located from California to Texas.  The first year of development ranged from 1982 to 1992.  
NCCA did not collect MIS program data and all programs except one were embedded.  Each 
data field, shown in Table 9-2, is defined below. 
 

  Contractor Contract DoD-Std Platform Labor Total 
$/Hr 

$/Hr %Expd/ 
Program Contractor Location Type 2167A  KHrs Cost ($K)  Compl 

NCCA 1 1 
 

West CPIF Post Missile 49.90 $4,709.62 $94.38    88.357 
NCCA 2 2 East CPIF Post Missile 63.88 $7,170.56 $112.25    95.2 
NCCA 3 3 West FPI Pre Missile 560.09 $45,164.53 $80.64    99.8 
NCCA 4 3 

3 
West FFP Pre Aircraft  792.80 $86,637.84 $109.28    97.3 

NCCA 5 3 
 

West FFP Post Aircraft 314.22 $41,037.60 $130.60  100.0 
NCCA 6 4 East CPIF Pre Ship 345.95 $25,235.64 $72.95    92.1 
NCCA 7 5 West CPIF Pre Ship 207.75 $16,490.62 $79.38    98.5 
NCCA 8 6 West FPI Post Ship 652.10 $57,282.64 $87.84  100.0 
NCCA 9 7 East FFP Post Elex 138.00 $9,571.33 $69.36    99.7 
NCCA 10 8 East CPAF/FF Post Ship 326.69 $26,067.94 $79.79    99.3 
NCCA 11 9 East FPI Post Aircraft 2.41 $316.59 $131.64  100.0 
NCCA 12 10 East FFP Pre Aircraft 723.99 $94,602.96 $130.67    91.9 
NCCA 13 11 West FFP Post Missile 11.74 $911.64 $77.69    98.7 
NCCA 14 11 West CPIF Post Missile 202.26 $17,902.27 $88.51    90.1 
NCCA 15 3 West CPFF Post Missile 115.00 $10,372.80 $90.20    96.6 

Table 9-2:  NCCA Normalized Software Labor Rate Database FY97$K (Cost through G&A) 
 
 1) Program:  Records the program name for each software development.  This 
information is business sensitive and is withheld from the sanitized version of the NCCA 
Raw Labor Rate Database.  See Appendix F for this information. 

 
 2) Contractor:  Records the name of the contractor for identification purposes and for 
development of contractor specific labor rate databases.  This information is business 
sensitive and is withheld from the sanitized version of the NCCA Raw Labor Rate 
Database.  See Appendix F for this information. 

 
3) Contractor Location:  Records the city and state of the facility for each program.  

After all the locations were collected, NCCA categorized the states into two regions (east or 
west).  This information is business sensitive and is withheld from the sanitized version 
of the NCCA Raw Labor Rate Database.  See Appendix F for this information. 
 
 4) Contract Type:  Records the contract type for each software development effort.  The 
database includes cost-plus and fixed-price contract types. 
                                                 
56Due to the proprietary nature of the data, program name, developing contractor name and labor rate will not be published in 
tandem.  The key code to the data points is provided in Appendix F. 
57NCCA made an exception to the 90 percent or more rule for this program because it had two prime contractors.  One contractor 
was slightly less than 90 percent expended, but the combined percent expended for both contractors was 92 percent. 
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 5) DoD-STD-2167A:  Records the development standard.  NCCA used the contract 
number to determine the date of contract award.  Based on this year, NCCA determined if the 
development effort was prior to or after DoD-STD-2167A was implemented.  Prior to 1985, other 
standards were used to develop software. 
 
 6) Platform:  Records the platform type for each program (aircraft, missiles, ships or 
electronics). 
 
 7) Labor KHours:  Records the total hours expended to develop software for the 
program.  The CCDR reports effort in hours and the CPR reports effort in man-months. 
 
 8) Total Cost ($K):  Records the cost at the total software level in thousands.  The total 
software cost level is the total amount of money expended for developing the program software.  
The total software cost includes both direct and indirect costs.  It does not include COM and 
Fee/Profit; these burden rates are included in the price level analysis. 
 
 9) $/Hr:  Total dollars expended divided by total labor hours for the program’s software 
effort. 
 
 10) %Expd/Compl:  Calculates the percent complete.  This equates to the actual 
software cost spent to date on a CCDR divided by the total software cost at completion.  For 
CPRs, NCCA calculated the percent complete by dividing the software actual cost of work 
performed (ACWP) by the software LRE.  

 
9.3  METHODOLOGY AND RESULTS 
 
There are several approaches that can be used to convert software effort to software cost.  The 
preferred approach, if the contractor is known, is to utilize the Forward Pricing Rate Agreements 
(FPRAs).  These rates are the actual Defense Contracting Audit Agency (DCAA) approved or 
recommended rates for the contractor; they best represent current and future business base 
conditions.  However, to apply these rates correctly, not only does the analyst require a 
proposed or representative historical software team composition, but the analyst also should be 
aware of how the historical team composition compares with the proposed team composition for 
the program being estimated.  Appendix F provides a detailed example and further direction on 
the correct application of FPRAs.  If the FPRAs are not available, NCCA recommends the 
analyst try to develop a contractor-specific labor rate database based on the most analogous 
data available.  Appendix F provides detailed procedures for the application of a contractor-
specific labor rate.  Both approaches focus on retrieving the most analogous historical data 
available to estimate the software cost.  However, if the analyst has been unsuccessful in 
performing either approach, NCCA recommends the analyst utilize the software team’s effort-to-
cost conversion tool discussed in this section. 
 
In the process of developing an effort-to-cost conversion tool, NCCA computed average labor 
rates, performed nonparametric analyses using the Wilcoxon Two-Sample test and ran both 
linear and power regressions.  Technical information such as sizing, code condition and 
language was not provided; therefore, the productivity drivers identified in Section 4 - Effort 
Analysis:  Significant Drivers could not be used to partition the database.  The other 
characteristics (contract type, platform type, contractor location, number of labor hours and 
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software development standard) were provided for each program and were investigated as 
database partitions using the non-parametric Wilcoxon Two-Sample test.  These characteristics 
were examined as database partitions for the following reasons:  
 
Contract Type 
 
NCCA attempted to capture the different rate structures due to the inherent risks of different 
contract types.  A fixed price contract places full assumption of risk, cost, and profit or loss on 
the contractor.  A cost plus contract is a total cost reimbursement contract where the 
government is required to reimburse the contractor for all reasonable and allocable costs 
incurred during contract performance.  There were seven cost plus data points and eight fixed 
price data points.  
 
Platform Type 
 
NCCA attempted to capture the difference between platforms; air systems have greater physical 
constraints than non-air systems.  The database consisted of software development efforts for 
aircraft avionics, missiles, shipboard electronics and ground electronics programs.  There were 
four aircraft related data points and eleven non-aircraft (missiles, ships, electronic) data points.  
 
Contractor Location 
 
NCCA divided the database to investigate possible geographical (i.e., east versus west) 
differences in rate structures due to varying cost of living levels.  The database included nine 
contractors in the west (California, Texas, Arizona) and six contractors on the East Coast 
(Rhode Island, Maryland, Virginia, Florida, New Jersey). 
 
Number of Labor Hours 
 
Graphically, it appeared that there were two separate data sets and the database breakpoint 
was at a size of 200K.  Six data points had less than 200K labor hours and nine data points had 
more than 200K labor hours. 
 
Software Development Regulation 
 
In the database, the years of software development range from 1982 through 1992.  During this 
ten year span, there were different DoD standards used for different programs.  After 1985, 
DoD-STD-2167A was the standard for developing software.  Prior to 1985, there were several 
DoD standards utilized for software development.  Each standard had different requirements for 
documenting the process, controlling the process, presenting the process, and conducting 
reviews of the process.  Five programs in the database were developed prior to DoD-STD-
2167A and ten programs were developed after DoD-STD-2167A became effective. 
 
9.3.1  AVERAGE LABOR RATE ANALYSIS 
 
Average labor rates were developed for the database partitions described above.  NCCA 
calculated the labor rates by dividing software dollars by software labor hours.   
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Table 9-3 summarizes the results and statistics from the average rate analysis.  The back-up 
spreadsheets for the average rate analysis are provided in Appendix F. 
 

  
Population 

Avg Rate/Hr 
(FY97$) 

 
SEE58 

 
CVest

59 
Average Rate One  Total (Top-Level) $95.68 9167.90 31% 

Average Rate Two (Contract Type)  Cost Plus $88.21 7995.93 27% 

 Fixed Price $102.21   

Average Rate Three (Platform) Aircraft $125.55 4128.69 14% 

 Non-Aircraft $84.82   

Average Rate Four (Location) East $99.44 8603.82 29% 

 West $93.17   

Average Rate Five (Size) <200K Hours $95.92 9191.90 31% 

 >200K Hours $95.52   

Average Rate Six (Standard) Pre DoD-STD-2167A $94.58 9358.48 32% 

 Post DoD-STD-2167A $96.23   
Table 9-3:  Average Labor Rate Analysis (Cost through G&A) 

 
To complete the average labor rate analysis, the Wilcoxon Two-Sample test was performed for 
each population to determine if the population means were statistically different, where Ho, the 
null hypotheses, assumes that the population means are equal.  Table 9-4 presents the final 
results from each test (see Appendix F).  Based on the results from the Wilcoxon Two-Sample 
test (see Appendix C), NCCA concluded that platform type was the only significant driver among 
the five variables examined.  Since the means were proven to be statistically different, an 
aircraft software development estimate should use an aircraft specific average labor rate, while 
ship, missile, and electronic software development estimates should use the non-aircraft 
average labor rate.  Since platform type was the only significant driver, it was the only dummy 
variable used in the follow-on regression analyses.   
 

 Population Reject Ho 

Test One Cost Plus vs. Fixed Price No 
Test Two Aircraft vs. Non-Aircraft Yes 
Test Three East Coast vs. West Coast No 
Test Four Labor Hours < 200K vs. Labor Hours > 200K No 
Test Five Pre-DoD-STD-2167A vs. Post-DoD-STD-2167A No 

Table 9-4:  Nonparametric Analysis 

 
9.3.2  REGRESSION ANALYSIS 
 
In an attempt to improve the statistics of the average labor rates shown above, NCCA 
performed linear and power regression analyses.  Software cost through G&A (FY97$K) was 
the dependent variable.  Thousands of labor hours and the platform dummy variable, or dummy 
slope, were the independent variables.  For both sets of analyses (linear and power), the 
methodology for regression analyses sets one ($ = f(labor hours) and two ($ = f(labor hours and 
platform type) was the same.  The final spreadsheets for each analysis are provided in 
Appendix F and the analyses and results are detailed below. 

                                                 
58 SEE is the standard error of the estimate is a measure of the deviation of the sample data points from the regression line. 

59 CVest = 
Y

SEE dataset , where Y = $29,564.97.  
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9.3.2.1  REGRESSION ANALYSIS SET ONE 
 
NCCA regressed software dollars as a function of labor hours.  This analysis provided both 
linear and power regressions, equations [9-1] and [9-2], for estimating the development cost of 
software.  The Labor Khrs variable was significant at the 95 percent confidence level. 
 

FY97$K = -3,045.36 + 108.54 * (Labor Khrs ) 
R2 = 0.93; CV = 0.28; Predict (20) = 33%; Range 2.41 - 792.80 Labor Khours60 

 
FY97$K = 103.26 * (Labor Khrs)0.98 

R2 = 0.98; CV = 0.22; Predict (20) = 60%; Range 2.41 - 792.80 Labor Khours 
 
9.3.2.2  REGRESSION ANALYSIS SET TWO 
 
NCCA regressed software dollars as a function of labor hours and the dummy intercept variable, 
platform type (equations [9-3] - linear and [9-5] - power).  Platform type was also used as a 
dummy slope variable (equations [9-4] - linear and [9-6] - power).  The dummy slope variable 
assumes that the slopes of the two regression lines are different, but that the intercept terms are 
identical.  Platform type was significant at the 95 percent confidence level.  
 
Equation [9-3] is the linear equation, using the dummy intercept.  

 
FY97$K = 10,055.89 + 99.47 * (Labor Khrs) - 14,150.64 * D1 

R2 = 0.97; CV = 0.20; Predict (20) = 60%; Range 2.41 - 792.80 Labor Khours 61  
where D1 = 0 for aircraft and 1 for non-aircraft 

 
Equation [9-4] is the linear equation, using the dummy slope. 
 

FY97$K = 374.32 + 119.37 * (Labor Khrs) - 37.45 * [D1 * Labor Khrs] 
R2 = 0.99; CV = 0.13; Predict (20) = 73%; Range 2.41 - 792.80 Labor Khours 

where D1 = 0 for aircraft and 1 for non-aircraft 
 
Equation [9-5] is the power equation, using the dummy intercept. 
 

 FY97$K = 136.98 * (Labor Khrs)0.98 * e(D1 * -0.40) 
R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours 

 where D1 = 0 for aircraft and 1 for non-aircraft 
 
Equation [9-6] is the power equation, using the dummy slope. 

 
FY97$K = 95.91 * (Labor Khrs)1.02 – (D1 * -.0006) 

R2 = 0.99; CV = 0.20; Predict (20) = 47%; Range 2.41 - 792.80 Labor Khours 
where D1 = 0 for aircraft and 1 for non-aircraft 

                                                 
60 Labor hours less than 28K will result in a negative cost.  
61 Non-aircraft programs with labor hours less than 41K will result in a negative cost. 

[9-2] 

[9-3] 

[9-5] 

[9-4] 

[9-6] 

[9-1] 
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9.4  RECOMMENDATIONS 
 
Although all six equations developed in Section 9.3.2 were significant, only equations [9-3] 
through [9-6] capture the impact of the significant driver:  platform type.  Of these, equations [9-
4] and [9-5] had the lowest CVs (13 percent).  NCCA then compared equation [9-5] (power form 
of the equation) to equation [9-4] (the linear form of the equation) to determine how well the 
power equation performed.  Equation [9-5] resulted in smaller residuals than equation [9-4] on 
small programs; but a majority of the time, the estimates for both equations were within two 
percent of one another.  Equation [9-5] had a Predict (20) of 87 percent in comparison to 
equation [9-4]’s Predict (20) of 73 percent.  A detailed review of the resulting residuals indicated 
no other trends or biases in the data (i.e., no overestimating or underestimating of large vice 
small programs, or aircraft vice non-aircraft).  For these reasons, equation [9-5] is the 
recommended regression.   
 
Equation [9-5] was then compared to the average labor rates. For purposes of comparison, the 
lower level average labor rate (set of factors developed in section 9.3.1) which captures the 
platform impact is shown below: 
 

Aircraft = $125.55/Hour; Non-Aircraft = $84.82/Hour  
CVest = 0.14; Predict (20) = 87.00% 

 
These two methodologies are essentially identical, however, the CVest of the average labor rate 
was 14 percent, as shown above.  Equation [9-5] has a lower CV (13 percent).  However, it 
should be noted that equation [9-5] has an exponent of 0.98 which indicates a small economy of 
scale (i.e., it is more cost effective to develop large programs than small programs).  This 
implies that there is a fixed level of cost (possibly captured in overhead) associated with all 
programs and that, as the hours increased, this cost is allocated across a larger base; hence 
cost per hour is lower for a larger program.  However, because an exponent close to one 
implies that the relationship is almost linear, the economies of scale are actually quite minute.  
Therefore, based on the lower CV value, NCCA recommends utilizing the platform specific 
(aircraft or non-aircraft) equation provided below when analogous or contractor specific data is 
not available: 
 

FY97$K = 136.98 * (Labor Khrs)0.98 * e(D1 * -0.40) 
R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours 

 where D1 = 0 for aircraft and 1 for non-aircraft 
 

Cost of Money (COM) and fee were not available for all data points in the NCCA Normalized 
Labor Rate Database; therefore, NCCA used what was available to develop average burden 
rates.  Although they were based on a small population, the resulting burden rates were 
comparable to those experienced, in general, by other EMD programs.  Appendix F contains the 
resulting average burden rates.  These rates were applied to the estimated software cost 
estimate to arrive at a software price regression.  Programs NCCA 4 and NCCA 15 provided 
cost through G&A.  Typically COM is applied to cost less G&A, versus COM being applied to 
cost through G&A, but in order to remain consistent, NCCA calculated and then applied an 
average COM rate, 2.1 percent to cost through G&A.  The average COM rate was based on six 
programs from the NCCA Normalized Labor Rate Database.  An average fee, 10.9 percent, 
calculated based on three programs that provided fee separately, was then applied to cost 

[9-5] 
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through G&A and COM.  The following regression was developed to estimate the price of 
software through G&A, COM and fee:   

 
FY97$K = 154.21 * (Labor Khrs)0.98 * e(D1 * -0.39) 

R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours 
 where D1 = 0 for aircraft and 1 for non-aircraft 

 
NCCA’s recommended process for converting effort-to-cost is shown in Figure 9-5.   
  
Step 1:  Determine if there is additional data (analogous or contractor).  If so, then normalize 
the data and develop analogous or contractor specific cost estimating tools. 
 
Step 2:  If no data exists, then use NCCA’s effort-to-cost conversion regression (aircraft and 
non-aircraft), provided above.   

 
 

Figure 9-5:  Recommended Labor Rate Estimation Process 
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9.5 CONCLUSIONS 
 
With the exception of conducting risk analysis, converting effort-to-cost is the final step towards 
developing a software cost estimate.  Through this analysis, NCCA was able to identify platform 
type as a variable that affects the cost of software development.  This variable was the only 
significant variable statistically proven to affect software development cost.  Even with the 
exceptional statistics and robust underlying data set (i.e., size, range, platform type, contract 
type, etc.), this analysis could be enhanced with the collection of more data; especially data that 
reflects current practices and technologies. 

 
9.6  ADDITIONAL CONSIDERATIONS 
 
There are two other issues the analyst should consider when utilizing the NCCA Raw Labor 
Rate Database or historical data from other sources.  These issues are:  1) drastic overhead 
rate changes due to company location or business base changes and 2) acquisition strategy 
changes. 
 
If a company relocates, the relocation can affect the labor hours expended (both indirect and 
direct costs).  If a company has already relocated, NCCA recommends obtaining the projected 
change in rates from the Administrative Contracting Officer (ACO).  Additionally, different 
divisions within a company may have significantly different productivities and rates due to 
different business practices and/or accounting structures.  If a company consolidates with other 
divisions or companies, drastic changes in rate structures may occur. 
 
Acquisition strategy also affects the labor cost.  An analyst may see exceptionally low direct 
labor and overhead rates if the contractor is using software vendor houses vice developing 
software in-house.  The NCCA analyst needs to know who is developing the software and 
where, and also, how this compares with the way business was previously conducted. 
 
If the analyst determines, that a contractor’s proposed labor rate is relatively low in comparison 
to historical labor rates for that contractor or NCCA’s average labor rates, the analyst should 
investigate whether or not there have been any changes to the company’s rate structure.  If 
there have been changes, determine the underlying cause of these changes.  If the contractor 
does not provide valid reasons for the changes, the analyst should use NCCA’s recommended 
approach. 
 
9.7  FUTURE EFFORTS 
 
In the future, to improve the effort-to-cost conversion tool, NCCA recommends the following 
efforts be performed: 
 
1) Collect data for additional embedded programs to enlarge the NCCA Normalized Labor Rate 

Database. 
 
2) Collect data for MIS programs to widen the software application range of the NCCA 

Normalized Labor Rate Database. 
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3) Collect SLOC and cost per reporting period for each program in order to evaluate the 
relationship between SLOC growth (an indication of problems in the development process) 
and the associated software cost.  This data will also allow us to track the average man-year 
rate and software team composition over the software development process.  Appendix F 
provides more details.  

 
4) Collect both CCDRs and CPRs for programs to investigate the differences between percent 

expended and percent complete. 
 
5) Track the software development effort and associated man-year rates for specific 

contractors.  Collecting effort data in conjunction with the associated man-year rates would 
provide insight into the specific skill level that is required to achieve a certain productivity 
level.  For example, this would allow the analyst to obtain the associated man-year rate of z1 
for program X which experienced a productivity of seven SLOC per day versus program Y 
which experienced four SLOC per day with an associated man-year rate of z2. 

 
6) Collect the phases associated with the hours expended developing the software.  
 
7) Collect the actual hours expended per man-month for data collected via CPRs which report 

total man-months expended for software development.



 

 

 
 

RISK ANALYSIS 
 
 

10.1  INTRODUCTION 
 
Since software size is typically one of the primary inputs for developing a software cost 
estimate, the accuracy of the cost estimate is highly dependent on the quality of the size 
estimate.  However, size is difficult to estimate early in the acquisition cycle when the system 
design and requirements are not clearly defined.  Verner and Tate [20] cited several studies that 
pursued the “elusive goal” of accurate size estimation, and Conte [21] stated that “expert sizing 
depends on so many subjective factors that different ‘experts’ often arrive at radically different 
estimates.” 
 
Historically, SLOC size estimates have been optimistically low with respect to total code count 
and optimistically high with respect to reused code count.  This section of the handbook 
addresses NCCA’s approach to quantifying the risk associated with optimistic size and reuse 
assumptions.   
 
The following areas of discussion describe NCCA’s development of a risk analysis 
methodology: 
 

• NCCA Risk Analysis Databases 
• SLOC Growth Methodology, Results and Conclusions 
• Code Condition Change Methodology, Results and Conclusions 
• Overall Recommended Approach 
• Future Efforts 

  
10.2  NCCA RISK ANALYSIS DATABASES 
 
NCCA also created a separate SLOC growth risk database to support the development of 
software risk analyses.  The detailed methodology will be discussed below. 
 
10.2.1  GROUND RULES AND ASSUMPTIONS 
 
Listed below are the ground rules and assumptions for this analysis: 
 
1) NCCA assumed that the program-level sample data was derived from a normally-distributed 

population.  This means that calculating the mean, median, and mode statistics is simple, 
and the procedure is well documented.  Additionally, the results of statistical tests, such as 
the t-test, are valid for making decisions about different samples. 

 
2) All program-level SLOC represented logical lines of code. 

10 
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10.2.2  RAW RISK ANALYSIS DATABASE  
 
NCCA extracted the majority of the data from the SMC Database [7] and the remaining data 
from internal NCCA files and a study by Om and Bui [22] at IDA. 
 
NCCA performed a query of the SMC Database to obtain data points that included both actual 
and estimated SLOC measured using the logical code counting convention.  The query 
produced 12 program-level and 28 CSCI-level data points.  Next, a search of NCCA’s files 
provided 11 additional program-level data points.  Finally, one program-level and four CSCI-
level data points were collected from the IDA study for a total of 23 program-level and 32 CSCI-
level data points.  See Appendix G for the list of data points, including associated data 
elements. 
 
10.2.3  NCCA NORMALIZED RISK ANALYSIS DATABASE 
 
A number of data points in the raw database were eliminated.  Specifically, three of the 23 
program-level data points were MIS programs which were excluded to remain consistent with 
the effort, schedule and labor rate analyses.  All 32 of the CSCI-level data points were excluded 
based on the results of the Mann Whitney U test and the Kolmogorov-Smirnov test (see 
Appendix C for more details), which showed that the means and variances were not equal to the 
program-level data points.  In addition to these deletions, four program-level data points that did 
not have verifiable SLOC estimates were also eliminated.  Finally, the Kolmogorov-Smirnov test 
was conducted to determine whether the one Assembly program should be deleted.  It was 
determined that the one Assembly data point was not statistically different then the other 15 
HOL data points.  As a result, the normalized SLOC Growth Database includes 16 program-
level data points. 
 
Although the programs were developed between Milestones II and III, specific review dates 
were unknown.  The majority of the program names are also unknown.  The range of estimated 
SLOC values is 14 to 1,246 KSLOC; nine programs are less than 100 KSLOC.  Five programs 
are entirely new.  All the data is for weapon system programs where the condition of the code, 
both new and reused, was known.  See Appendix G for a detailed list of these data points with 
associated data elements. 
 
The program-level data was partitioned in several ways:  1) language (Fortran, Ada, Jovial, 
Atlas, CMS-2, C or C++, Assembly, and other); 2) development method (waterfall, incremental, 
and spiral); 3) mission assigned (Command and Control (C2)), testing, software tools, signal 
processing, and mission plans); and 4) complexity (simple, routine, difficult and complex).  
Information on the development method and complexity were only available for the SMC data 
points.  All variables cited above were objective measures except complexity level which was a 
subjective measure of requirements definition complexity: 
 
1) Simple - Existing product line in an existing environment. 
2) Routine - New product line in an existing environment. 
3) Difficult - New product line in a new environment. 
4) Complex - Pushing state-of-the-art. 
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10.3  SLOC GROWTH METHODOLOGY, RESULTS AND 
CONCLUSIONS 

 
Three different SLOC growth estimating approaches were developed.  Each approach has two 
sections:  1) Methodology and Results and 2) Conclusions. 
 
10.3.1  APPROACH ONE 
 
10.3.1.1  APPROACH ONE METHODOLOGY AND RESULTS 
 
The first approach established top-level standard growth factors by calculating the mean, 
median, and range mode of the percent total growth, where: 
 

%Total Growth = 
( )

100*
SLOCEstimated

SLOCEstimatedSLOCActual −
 

 
The median and range mode statistics indicated the “most likely” percent growth.  The standard 
factor, when applied as shown below, provides a revised SLOC estimate.  (See examples on 
pages 10-16 through 10-19.) 
 
 Revised SLOC = (%Total Growth * Initial SLOC Estimate) + Initial SLOC Estimate 
 
The mean, SEE, and CVest were calculated for the percent total growth.  See Table 10-1.  The 
Predict (20) was also calculated for each metric.  (See Appendix C for a more complete 
explanation of CVest and Predict (20).) 
 
As shown in Table 10-1, the mean percent total growth for the 16 programs was 63 percent or 
59 KSLOC.  The average actual size of a program was 274 KSLOC, and the Predict (20) was 
25 percent; that is, four of the 16 estimated values were within 20 percent of their actual percent 
growth.  The CVest for the mean was 82 percent; the mean overestimated 69 percent of the 
programs possibly due to four large-growth data points (#18, #327, #2461, and NCCA-1).  Thus, 
it was not a good predictor of total growth. 
 
Since the mean overestimated a disproportionate amount of the time, NCCA performed a 
tradeoff analysis of the data to determine whether program size influenced the percentage of 
growth experienced.  This tradeoff analysis (similar to the one discussed previously for Efactors 
in Section 5 - Effort Analysis:  Normalized Regressions) determined the point where the 
lowest CV occurred.  This “optimal” point was 100 KSLOC with nine programs less than 100 
KSLOC and seven programs greater than 100 KSLOC.  However, the associated t-statistic for 
this variable was not significant at the 95 percentile.  Furthermore, when these samples were 
compared using the Mann-Whitney U test, the results demonstrated that the means of the two 
samples were equal (see Appendix G for the data and non-parametric results); hence, no 
further analysis of the separate samples was done. 
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A B C D

Record # Mission Est Tot Act Tot Total Growth %Tot Growth Y(est) e(i) %e(i)

(B - A) (B/A) - 1 (0.6326 x A) + A (C - B) (D/B)

8 C2 618000 709000 91000 14.72 621909.31 -87090.69 -12.28%

15/16/17 C2 23599 25814 2215 9.39 23748.28 -2065.72 -8.00%

18 C2 14000 70143 56143 401.02 14088.56 -56054.44 -79.91%

23/24/26/27 Testing 41800 46303 4503 10.77 42064.42 -4238.58 -9.15%

308 S/W Tools 45000 45000 0 0.00 45284.66 284.66 0.63%

327 C2 39294 119400 80106 203.86 39542.56 -79857.44 -66.88%

2459 C2 22000 30000 8000 36.36 22139.17 -7860.83 -26.20%

2461 Signal Proc 15500 26513 11013 71.05 15598.05 -10914.95 -41.17%

2613 C2 100000 122000 22000 22.00 100632.57 -21367.43 -17.51%

2616 Mission Plans 532000 877129 345129 64.87 535365.30 -341763.70 -38.96%

NCCA-1 C2 206650 394309 187659 90.81 207957.22 -186351.78 -47.26%

NCCA-2 C2 74000 82930 8930 12.07 74468.11 -8461.89 -10.20%

NCCA-3 C2 213800 261800 48000 22.45 215152.44 -46647.56 -17.82%

NCCA-4 C2 153000 185000 32000 20.92 153967.84 -31032.16 -16.77%

NCCA-5 C2 83900 108850 24950 29.74 84430.73 -24419.27 -22.43%

NCCA-6 C2 1246272 1272200 25928 2.08 1254155.60 -18044.40 -1.42%

N = 16 Mean = 273524 59224 63.26% SEE = 111299

CVest = 0.41

Predict (20) = 25%
Table 10-1:  Mean Percent SLOC Growth Analysis 

 
To minimize the impact of the large-growth data points, NCCA developed an alternative growth 
factor based on the median (vice mean) of the NCCA Normalized SLOC Growth Database.  The 
median percent total growth was 22 percent or 35 KSLOC.  By definition, the median splits the 
data into two equal parts; hence, the median percent total growth neither overestimated nor 
under-estimated a disproportionate amount of the time, and the CVest decreased substantially.  
The CVest when applying the median was 37 percent and the Predict (20) was 62.5 percent.  
Therefore, even though a program experienced a very small or very large amount of growth, the 
median was within 20 percent of the actual values 63 percent of the time.  Hence, it performed 
better than the mean (see Table 10-2). 
 
In addition to evaluating the mean- and median-based growth factors, the range mode was 
considered.  The range mode percent total growth was 20 to 30 percent.  This metric provided a 
range estimate rather than a single point estimate.  
 
10.3.1.2  APPROACH ONE CONCLUSIONS 
 
The advantages of these top level factors are:  1) the mean and median percent total growth are 
simple to calculate and apply; 2) the median percent total growth is relatively insensitive to 
extreme values; and 3) the median percent total growth factor falls within the range mode and 
therefore is assumed to be more accurate than the mean. 
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A B C D
Record # Mission Est Tot Act Tot Total Growth %Tot Growth Y(est) e(i) %e(i)

(B - A) (B/A) - 1 (0.2225 x A) + A (C - B) (D/B)
308 S/W Tools 45000 45000 0 0.00 55012.50 10012.50 22.25%

NCCA-6 C2 1246272 1272200 25928 2.08 1523567.52 251367.52 19.76%
15/16/17 C2 23599 25814 2215 9.39 28849.78 3035.78 11.76%

23/24/26/27 Testing 41800 46303 4503 10.77 51100.50 4797.50 10.36%
NCCA-2 C2 74000 82930 8930 12.07 90465.00 7535.00 9.09%

8 C2 618000 709000 91000 14.72 755505.00 46505.00 6.56%
NCCA-4 C2 153000 185000 32000 20.92 187042.50 2042.50 1.10%

2613 C2 100000 122000 22000 22.00 122250.00 250.00 0.20%
NCCA-3 C2 213800 261800 48000 22.45 261370.50 -429.50 -0.16%

NCCA-5 C2 83900 108850 24950 29.74 102567.75 -6282.25 -5.77%
2459 C2 22000 30000 8000 36.36 26895.00 -3105.00 -10.35%
2616 Mission Plans 532000 877129 345129 64.87 650370.00 -226759.00 -25.85%
2461 Signal Proc 15500 26513 11013 71.05 18948.75 -7564.25 -28.53%

NCCA-1 C2 206650 394309 187659 90.81 252629.63 -141679.38 -35.93%
327 C2 39294 119400 80106 203.86 48036.92 -71363.09 -59.77%

18 C2 14000 70143 56143 401.02 17115.00 -53028.00 -75.60%

N = 16 Mean = 273524 Median = 22.25% SEE = 101786

CVest = 0.37

Predict (20) = 62.50%  
Table 10-2:  Median Percent SLOC Growth Analysis 
 
Generally, the disadvantages of this approach are:  1) the mean is much more sensitive to 
extreme values (as demonstrated by the large CVest and small Predict (20); 2) the median  
ignores the relative size of the apparent growth, treating all data points greater than or less than 
the median point equally (i.e., all the data points with greater than 22 percent growth are treated 
identically); and 3) a point regression may not provide an accurate “most likely” estimate.  
 
10.3.2  APPROACH TWO  
 
10.3.2.1  APPROACH TWO METHODOLOGY AND RESULTS 
 
The second approach used regression analysis to develop relationships of the form: 
 

Actual SLOC = f(Estimated SLOC) 
Percent Growth = f(Estimated SLOC) 

 
These regressions were developed with and without dummy variables, such as:  size, language, 
development method, complexity, mission, and percent actual new code.  See Appendix C for 
an explanation of dummy variables. 
 
The validity and significance of the resulting regression equations were evaluated using a 
variety of statistical tests and measures such as the F- and t-tests, Mann-Whitney U test, 
Kolmogorov-Smirnov test, CV, R2 values, SEE, and residual analysis. 
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Table 10-3 displays representative regression equations and their statistics:  
 

Y(est) = X1(coeff) X1 + X2(coeff) X2 + Constant R2 CVest  Std ERR Predict (20) t1(value) t1(sig) t2(value) t2(sig) N df F(value)  F(sig)  

                     

Act Tot = 1.0816 Est Tot +   + 41743 0.95 0.33 88901.92 31% 15.506 100%   16 14 240.44 100% 

ln(Act Tot) = 0.00000315 Est Tot +   + 11.0942 0.68 0.74 0.7368 13% 5.4426 100%   16 14 29.62 100% 

ln(Act Tot) = 0.8769 ln(Est 
Tot) 

+   + 1.7791 0.90 0.42 0.4163 44% 11.0725 100%   16 14 122.60 100% 

                  

%Tot Growth = -7.51876E-07 Est Tot +   + 0.7937 0.06 1.64 1.0381 6% -0.9231 63%   16 14 0.85 63% 

ln(%Tot 
Growth) 

= -0.0000021 Est Tot +   + -0.6690 0.29 1.14 1.1351 6% -2.41 97%   16 14 5.81 97% 

ln(%Tot 
Growth) 

= -0.4727 ln(Est 
Tot) 

+   + 4.2560 0.24 1.18 1.1756 31% -2.114 95%   16 14 4.47 95% 

                  

Act Tot = 0.959 Est Tot + 118245.74 Size > 
100K 

+ 23668.443 0.96 0.29 79722.18 38% 11.2093 100% 2.0999 94% 16 13 151.70 100% 

Act Tot = 0.9981 Est Tot - 86381.26 Size < 
100K 

+ 108219.09 0.95 0.31 84391.81 25% 11.8198 100% -1.5926 86% 16 13 134.68 100% 

Act Tot = 1.0756 Est Tot - 31360.48 Ada + 48893.809 0.95 0.33 91277.09 38% 14.8398 100% -0.53 39% 16 13 114.18 100% 

Act Tot = 1.0881 Est Tot - 47798.32 C2 + 76186.421 0.95 0.33 89384.89 38% 15.4364 100% -0.9215 63% 16 13 119.35 100% 

Act Tot = 1.3715 Est Tot - 80761.80 Routine + 32333.65 0.95 0.34 69891 20% 13.11 100% -1.63 85% 10 7 86.90 100% 

Act Tot = 1.3504 Est Tot - 72690.60 Waterfall + 40243.39 0.95 0.34 70347 30% 13.10 100% -1.59 84% 10 7 85.80 100% 

Table 10-3:  Summary of Approach Two - Size Growth Estimating Relationships 

 
The R2 values demonstrate that this approach produced valid regressions for estimating actual 
total SLOC (the first three equations in Table 10-3 above), but not for estimating percent growth 
(the middle three equations).  Appendix G contains the regression analyses for the significant 
regressions (first six equations above).  Since none of the dummy variables attempted in 
equations six through 12 (the last six equations) were significant at the 95 percent confidence 
level, they were eliminated from further consideration.  Of the first six equations, the growth 
estimating relationship with the lowest CV and best associated statistics follows: 
 

Actual Total SLOC = 41743 + (1.0816 * Estimated Total SLOC) 
  R2 = 0.95; CVest = 0.33;  Predict (20) = 31%; Range = 14  - 1,246 KSLOC 

 
However, as shown by the residuals in Table 10-4, the equation severely overestimated most of 
the smaller programs. 
 
10.3.2.2  APPROACH TWO CONCLUSIONS 
 
The use of regression analysis indicates that there is a strong relationship between actual total 
SLOC and estimated total SLOC.  The advantage to Approach Two is that a statistical model 
explains the systematic behavior of the data while leaving out random components. 
 
The disadvantages to Approach Two are:  1) the influence of an excessively large program (e.g. 
NCCA-6) with a small growth percentage on the slope of the regression line (i.e., 
disproportionate amounts of over- or underestimating); and 2) the similar effect of an 
excessively small program (like #18) with a large growth percentage on the slope of the 
regression line. 
 

[10-1] 
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A B C

Record # Mission Est Tot Act Tot Y(est) e(i) %e(i)

(B - A) (C/A)

15/16/17 C2 23599 25814 67267.16 41453.16 160.58%

2461 Signal Proc 15500 26513 58507.53 31994.53 120.67%

2459 C2 22000 30000 65537.73 35537.73 118.46%

308 S/W Tools 45000 45000 90413.81 45413.81 100.92%

23/24/26/27 Testing 41800 46303 86952.79 40649.79 87.79%

18 C2 14000 70143 56885.18 -13257.82 -18.90%

NCCA-2 C2 74000 82930 121779.31 38849.31 46.85%

NCCA-5 C2 83900 108850 132486.84 23636.84 21.72%

327 C2 39294 119400 84242.38 -35157.62 -29.45%

2613 C2 100000 122000 149900.10 27900.10 22.87%

NCCA-4 C2 153000 185000 207223.25 22223.25 12.01%

NCCA-3 C2 213800 261800 272982.64 11182.64 4.27%

NCCA-1 C2 206650 394309 265249.42 -129059.58 -32.73%

8 C2 618000 709000 710152.78 1152.78 0.16%

2616 Mission Plans 532000 877129 617137.86 -259991.14 -29.64%

NCCA-6 C2 1246272 1272200 1389672.23 117472.23 9.23%  
Table 10-4:  Residuals of Actual Total SLOC versus Estimated Total SLOC 

 
10.3.3  APPROACH THREE 
  
10.3.3.1  APPROACH THREE METHODOLOGY AND RESULTS 
 
The third approach was a two-step analysis based on the hypothesis that size growth is 
inversely proportional to the extent of code reused (i.e., greater reuse means less growth and 
vice versa). 
 
The first step was to determine the program’s percentage of reused SLOC.  This was 
accomplished by estimating percent actual new SLOC (1 - percent actual reused SLOC) based 
on percent estimated new SLOC, since percent actual new SLOC (or percent actual reused 
SLOC) is unknown when a program initially starts.  The form of the regression is as follows: 
 

%Actual New SLOC = a + (b * %Estimated New SLOC) 
 
The second step was to estimate the actual SLOC based on the estimated SLOC and a dummy 
variable which accounts for the percentage of reused SLOC (1 - percent estimated new SLOC) 
in the program.  The dummy variable (percent actual new SLOC) was based on the estimating 
methodology described in the first step.  Below is the linear equation for the second step: 
 

Actual SLOC = a + (b * Estimated SLOC) + (c * %Actual New SLOC (estimated)) 
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Table 10-5 below shows the percent actual and estimated new SLOC and percent actual and 
estimated reused SLOC that were used in performing the regression analysis.  Only 11 of the 
16 data points were included, since five were entirely new programs.   
 

Record # Mission %New Est %New Act %Reuse Est %Reuse Act

15/16/17 C2 11.71 19.56 88.29 80.44
23/24/26/27 Testing 88.28 100.00 11.72 0.00

308 S/W Tools 44.44 55.56 55.56 44.44

327 C2 75.14 100.00 24.86 0.00
2461 Signal Proc 95.48 96.38 4.52 3.62

2613 C2 90.00 98.36 10.00 1.64
2616Mission Plans 24.81 61.24 75.19 38.76

NCCA-2 C2 25.68 33.68 74.32 66.32
NCCA-3 C2 89.50 80.42 10.50 19.58

NCCA-4 C2 42.48 86.49 57.52 13.51
NCCA-6 C2 41.49 40.84 58.51 59.16

N = 11 Mean = 57.18 70.23 42.82 29.77  
Table 10-5:  Programs with Reuse 

 
Table 10-6 shows the results of all three forms of the regression equation (see Appendix G). 
The R2 values demonstrated that this approach produced adequate regressions for percent 
actual new SLOC for the linear and power forms of the regressions. 
 

Y(est)  = X1(coeff)  X1 + Constant R2 CVest   Std ERR Predict (20) t(value) t(sig) N df F(value)  F(sig)  

                

%Act New = 0.8189 %Est New + 0.234 0.7426 0.22 0.1575 45% 5.0957 99.94% 11 9 25.9665 100% 

ln(%Act New) = 1.4469 %Est New + -1.2919 0.6863 0.3196 0.3196 55% 4.4376 99.84% 11 9 19.6919 100% 

ln(%Act New) = 0.7057 ln(%Est New) + 0.0563 0.7965 0.2575 0.2575 55% 5.9347 99.90% 11 9 35.2207 100% 

Table 10-6:  Approach Three Size Growth Estimating Relationships 
 
The best regression equation and its associated statistics follow: 
 

%Actual New SLOC = 0.234 + (0.8189 * %Estimated New SLOC) 
  R2 = 0.74; CV = 0.22; Predict (20) = 45%; Range = 16 – 1,246 KSLOC 

 
Although NCCA was able to develop a statistically significant percent new SLOC regression, 
this approach was abandoned because percent actual new was insignificant (i. e., percent 
reused SLOC did not drive SLOC growth) as a dummy variable (see t2(sig) in Table 10-7).  The 
following equation represents the form of the regression: 
 

Actual SLOC = a + (b * Estimated SLOC) + (c * %Actual New SLOC) 
b = x1(coefficient); c = x2(coefficient) 

 
Table 10-7 lists representative regressions and their statistics (see Appendix G): 

[10-2] 
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Y(est) = X1(coeff) X1 + X2(coeff) X2 + Constant R2 CV Std ERR Predict (20) t1(value) t1(sig) t2(value) t2(sig) N df F(value) F(sig) 

Act Tot = 1.0878 Est Tot + 37609.89 %Act New + 6462.427 0.9462 0.38 106225 27% 11.3081 100.00% 0.3117 23.67% 11 8 70.3836 100%

ln(Act Tot) = 3.18E-06 Est Tot + 0.9134 %Act New + 10.3568 0.733 0.7525 0.7525 9% 4.6614 99.84% 1.0684 68.35% 11 8 10.9819 99%

ln(Act Tot) = 0.9708 ln(Est Tot) + 0.5154 %Act New + 0.2505 0.953 0.3157 0.3157 55% 12.6866 100.00% 1.4884 82.50% 11 8 81.144 100%

%Tot Growth = -7.3E-08 Est Tot + 0.8772 %Act New + -0.2001 0.2057 1.48 0.5898 9% -0.1368 10.54% 1.3092 77.32% 11 8 1.0362 60%

ln(%Tot Growth) = -1.54E-06 Est Tot + 1.4108 %Act New + -2.025 0.3901 1.1306 1.1306 0% -1.5087 83.02% 1.0984 69.60% 11 8 2.5587 86%

ln(%Tot Growth) = -0.342 ln(Est Tot) + 1.7259 %Act New + 1.3164 0.3353 1.1803 1.1803 27% -1.1954 73.38% 1.3329 78.07% 11 8 2.0181 80%  
Table 10-7:  Software Growth Estimating Relationships 

 
10.3.3.2  APPROACH THREE CONCLUSIONS 
 
The advantages of the third approach are similar to those cited for Approach Two.  The primary 
disadvantage is that the dummy variable (percent actual new SLOC) is not statistically 
significant, so further consideration of this approach was ceased.  Also, this approach adds an 
extra layer of uncertainty when estimating future programs due to the addition of a second 
regression. 
 
10.3.4  RECOMMENDED APPROACH  
 
Table 10-8 summarizes the statistics for:  1) the two factors developed in Approach One and 2) 
the most statistically significant regression equation developed in Approach Two. 
 

 Estimating Methodology CVest Predict (20) 
Mean 63% 0.82 25.00% 
Median 22% 0.37 62.50% 
Regression Equation Actual Total SLOC = 41,743 + (1.081 * Est Total SLOC) 0.33 31.00% 

Table 10-8:  Summary of the Statistics for SLOC Growth Methodology 
 
In Approach One, the application of the mean resulted in a high CV and low Predict (20) value.  
The mean also overestimated a significant amount of the time.  The median, however, provided 
the highest Predict (20) and one of the lowest CVs for the resulting estimate, and, by definition, 
neither over- nor underestimated disproportionately. 
 
In Approach Two, the results of the simple regression performed on total SLOC showed an 
extremely high R2 value, indicating a good regression and a relatively low CV; however, the 
Predict (20) was low and the equation tended to overestimate.  Approach Three results were not 
statistically significant. 
 
To minimize the potential of overestimating a disproportionate amount of the time, NCCA 
prefers to maximize Predict (20) (i.e., be closer to the most likely estimate a higher percentage 
of the time) rather than minimize overall error.  (As stated previously, this is in contrast to our 
philosophy of minimizing standard error that was applied in earlier sections of this handbook.)   
Therefore, based on the results of Approaches One and Two (since Approach Three was not 
significant), NCCA recommends applying the median percent total growth factor of 22 percent 
when contractor/program-specific data is unavailable for developing specific growth estimating 
regressions or factors in a particular program.  The major strength of this approach is that this 
factor represents the “most likely” growth. 
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10.4  CODE CONDITION CHANGE METHODOLOGY, 
RESULTS AND CONCLUSIONS 

 
Not only does the SLOC count change over time, but usually the code condition also changes.  
The code condition (type and amount of reused and new SLOC) is an important input for 
generating an ESLOC estimate and subsequent effort estimate.  Initial estimates generally 
overestimate the amount of reused SLOC and correspondingly underestimate the amount of 
new SLOC (as shown in Table 10-5 previously).  Since reused code is typically less costly to 
develop than new code, a change in the reused versus new code distribution can cause a 
significant change in cost.  In addressing these issues, NCCA used the approaches described in 
previous sections to develop the means of overcoming flawed code condition estimating 
practices. 
 
This section describes the procedures for adjusting the distribution of the estimated reused and 
estimated new SLOC counts using the top-level standard factor approach (Approach One) and 
regression analysis approach (Approach Two) as described previously. 
 
As discussed in Section 4 - Effort Analysis:  Significant Drivers, ESLOC are the weighted 
sum of new and reused SLOC.  Generally, the effort associated with developing reused code is 
less than the effort to develop new lines of code, since reused code does not go through the full 
software development process.  Therefore, to accurately estimate the effort associated with a 
program, the differences between new and reused SLOC must be considered.  This is 
accomplished by calculating ESLOC as follows: 
 

Equivalent SLOC = New SLOC + (Efactor * Reused SLOC) 
 
where Efactor (as discussed in Sections 4 through 6) is calculated quantitatively. 
 
10.4.1  APPROACH ONE  
 
Four standard factors were developed for the first approach:  mean percentage, median 
percentage, mean percentage points, and median percentage points.  Means, SEEs, CVs, 
Predict (20)s, and residuals were calculated in each case. 
 
10.4.1.1  MEAN PERCENTAGE 
 
The Mean Percentage is the average percentage increase in the estimated percent new SLOC 
as follows: 
 

Mean Percentage Increase =∑ ÷







− n1

SLOCNewEstimated%
SLOCActualNew%

  

 
This percentage was then applied to the estimated percent new SLOC.  The disadvantage of 
this factor was that the Mean Percentage was sensitive to extreme values. 
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The Mean Percentage Increase was 38 percent with a Predict (20) of 36 percent62 and a CVest 
of 37 percent.  The residuals in Table 10-9 indicated that Mean Percentage Increase 
overestimated 73 percent of the time. 
 

A B C D
Record # Mission Est New Actual New %New Est %New Act %New Growth Y(est) e(i) %e(i)

(B/A) - 1 (0.38 x A) + A (C - B) (D/B)
15/16/17 C2 2763 5048 11.71 19.56 67.02 16.16 -3.3931 -17.35%

23/24/26/27 Testing 36900 46303 88.28 100.00 13.28 121.86 21.8606 21.86%
308 S/W Tools 20000 25000 44.44 55.56 25.00 61.35 5.7967 10.43%

327 C2 29524 119400 75.14 100.00 33.09 103.72 3.7199 3.72%

2461 Signal Proc 14800 25552 95.48 96.38 0.93 131.81 35.4331 36.77%
2613 C2 90000 120000 90.00 98.36 9.29 124.24 25.8777 26.31%

2616 Mission Plans 132000 537129 24.81 61.24 146.80 34.25 -26.9860 -44.07%
NCCA-2 C2 206650 394309 25.68 33.68 31.17 35.44 1.7644 5.24%

NCCA-3 C2 191350 210550 89.50 80.42 -10.14 123.55 43.1235 53.62%

NCCA-4 C2 65000 160000 42.48 86.49 103.58 58.65 -27.8409 -32.19%
NCCA-6 C2 517071 519600 41.49 40.84 -1.56 57.27 16.4305 40.23%

N = 11 Mean = 57.18 70.23 38.04% SEE = 26.03

CVest = 0.37

Predict (20) = 36.36%
Table 10-9:  Code Condition Mean Percentage Statistics 

 
10.4.1.2  MEDIAN PERCENTAGE 
 
The median percentage used the “most likely” increase in percent estimated new SLOC.  It was 
the central value that divided the data into two groups of equal size and was calculated from the 
percent actual increase of each program.  The advantage of this factor was that the median 
percentage was relatively insensitive to extreme values. 
 
The Median Percentage Increase was 25 percent with a Predict (20) of 45 percent.63  In Table 
10-10, the CVest is 30 percent, and the residuals demonstrate that the Median Percentage 
neither overestimated nor underestimated a disproportionate amount of the time. 
 
10.4.1.3  MEAN PERCENTAGE POINTS 
 
The mean percent new growth was calculated as follows: 
 

Mean Percentage Point Increase = 
( )% %Actual New SLOC Estimated New SLOC

n

−∑  

 

                                                 
62When applying the Mean Percentage regression, if the program is greater than 72 percent estimated New SLOC, assume the 
estimated new SLOC is 100 percent. 
63When applying the Median Percentage regression, if the program is greater than 80 percent estimated new SLOC assume the 
estimated new SLOC is 100 percent. 
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where n is the number of data points in the sample.  The resulting mean percentage point 
estimate is then added directly to the percent estimated new SLOC.  The disadvantage was that 
the mean percentage point estimate was sensitive to extreme values. 
 

A B C D

Record # Mission Est New Actual New %New Est %New Act Actual %Inc Y(est) e(i) %e(i)

(B/A) - 1 (0.25 x A) + A (C - B) (D/B)

NCCA-3 C2 191350 210550 89.50 80.42 -10.14 111.87 31.4504 39.11%

NCCA-6 C2 517071 519600 41.49 40.84 -1.56 51.86 11.0191 26.98%

2461 Signal Proc 14800 25552 95.48 96.38 0.93 119.35 22.9795 23.84%

2613 C2 90000 120000 90.00 98.36 9.29 112.50 14.1393 14.38%

23/24/26/27 Testing 36900 46303 88.28 100.00 13.28 110.35 10.3469 10.35%

308 S/W Tools 20000 25000 44.44 55.56 25.00 55.56 0.0000 0.00%

NCCA-2 C2 206650 394309 25.68 33.68 31.17 32.09 -1.5844 -4.70%

327 C2 29524 119400 75.14 100.00 33.09 93.92 -6.0798 -6.08%

15/16/17 C2 2763 5048 11.71 19.56 67.02 14.64 -4.9201 -25.16%

NCCA-4 C2 65000 160000 42.48 86.49 103.58 53.10 -33.3819 -38.60%
2616 Mission Plans 132000 537129 24.81 61.24 146.80 31.02 -30.2221 -49.35%

Mean = 70.23

N = 11 Median = 25.00% SEE = 21.18

CVest = 0.30

Predict (20) = 45.45%
Table 10-10:  Code Condition Median Percentage Statistics 

 
As shown in Table 10-11, the mean estimated percentage of new SLOC is 57 percent, while the 
mean actual percentage is 70 percent, increasing by an average of 13 percentage points.64  The 
Predict (20) is 55 percent, the CVest is 24 percent and the residuals show that the mean 
percentage point factor overestimated 73 percent of the time. 
 
10.4.1.4  MEDIAN PERCENTAGE POINTS 
 
The median percentage point factor added the “most likely” percentage point directly to the 
percent estimated new SLOC.  It was the central value that divided the data into two groups of 
equal size and was calculated by taking the difference between percent actual new SLOC and 
percent estimated new SLOC: 
 

Median Percentage Point Increase = %Actual New SLOC - %Estimated New SLOC 
 
The advantage of this factor was that the median percentage point was relatively insensitive to 
extreme values, and it improved the Predict (20). 
 
As shown in Table 10-12, the median percentage point Increase is eight percentage points with 
a Predict (20) of 64 percent65 and CVest of 25 percent. 
 
                                                 
64When applying the mean percentage point regression, if the program is greater than 87 percent estimated new SLOC, assume the 
estimated new SLOC is 100 percent. 
65When applying the median percentage point regression, if the program is greater than 92 percent estimated new SLOC, assume 
the estimated new SLOC is 100 percent. 
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A B C D
Record # Mission Est New Actual New %New Est %New Act Actual %Pts Inc Y(est) e(i) %e(i)

(B - A) (13 + A) (C - B) (D/B)
15/16/17 C2 2763 5048 11.71 19.56 7.85 24.75 5.1988 26.59%

23/24/26/27 Testing 36900 46303 88.28 100.00 11.72 101.32 1.3235 1.32%
308 S/W Tools 20000 25000 44.44 55.56 11.11 57.49 1.9349 3.48%

327 C2 29524 119400 75.14 100.00 24.86 88.18 -11.8179 -11.82%
2461 Signal Proc 14800 25552 95.48 96.38 0.89 108.53 12.1545 12.61%

2613 C2 90000 120000 90.00 98.36 8.36 103.05 4.6853 4.76%
2616 Mission Plans 132000 537129 24.81 61.24 36.43 37.86 -23.3792 -38.18%

NCCA-2 C2 206650 394309 25.68 33.68 8.00 38.72 5.0426 14.97%
NCCA-3 C2 191350 210550 89.50 80.42 -9.08 102.55 22.1215 27.51%

NCCA-4 C2 65000 160000 42.48 86.49 44.00 55.53 -30.9569 -35.79%

NCCA-6 C2 517071 519600 41.49 40.84 -0.65 54.54 13.6928 33.53%

N = 11 Mean = 57.18 70.23 13 SEE = 16.83

CVest = 0.24

Predict (20) = 54.55%
Table 10-11:  Code Condition Mean Percentage Point Statistics 

 
A B C D

Record # Mission Est New Actual New %New Est %New Act Actual %Pts Inc Y(est) e(i) %e(i)

(B - A) (8 + A) (C - B) (D/B)

NCCA-3 C2 191350 210550 89.50 80.42 -9.08 97.50 17.0755 21.23%

NCCA-6 C2 517071 519600 41.49 40.84 -0.65 49.49 8.6468 21.17%

2461 Signal Proc 14800 25552 95.48 96.38 0.89 103.48 7.1085 7.38%

15/16/17 C2 2763 5048 11.71 19.56 7.85 19.71 0.1528 0.78%

NCCA-2 C2 206650 394309 25.68 33.68 8.00 33.68 -0.0033 -0.01%

2613 C2 90000 120000 90.00 98.36 8.36 98.00 -0.3607 -0.37%

308 S/W Tools 20000 25000 44.44 55.56 11.11 52.44 -3.1111 -5.60%

23/24/26/27 Testing 36900 46303 88.28 100.00 11.72 96.28 -3.7225 -3.72%

327 C2 29524 119400 75.14 100.00 24.86 83.14 -16.8638 -16.86%

2616 Mission Plans 132000 537129 24.81 61.24 36.43 32.81 -28.4251 -46.42%

NCCA-4 C2 65000 160000 42.48 86.49 44.00 50.48 -36.0028 -41.63%

Mean = 70.23

N = 11 Median %Pts = 8 SEE = 17.73

CVest = 0.25

Predict (20) = 63.64%  
Table 10-12:  Code Condition Median Percentage Point Statistics 

 
10.4.2  APPROACH TWO  
 
The second approach used regression analysis to develop a relationship of the form: 
 
 

%Actual New SLOC = a + (b * %Estimated New SLOC) 
where: 
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%Estimated New SLOC = 1 - %Estimated Reused SLOC 
 
Table 10-13 shows the regression results.  The R2 values demonstrated that this approach 
produced adequate regressions for percent actual new SLOC as presented in the Approach 
Three Methodology and Results section. 
 

Y(est)  = X1(coeff)  X1 + Constant R2 CVest   Std ERR Predict (20) t(value) t(sig) N df F(value)  F(sig)  

%Act New = 0.8189 %Est New + 0.234 0.7426 0.22 0.1575 45% 5.0957 99.94% 11 9 25.9665 100% 

ln(%Act New) = 1.4469 %Est New + -1.2919 0.6863 0.3196 0.3196 55% 4.4376 99.84% 11 9 19.6919 100% 

ln(%Act New) = 0.7057 ln(%Est New) + 0.0563 0.7965 0.2575 0.2575 55% 5.9347 99.90% 11 9 35.2207 100% 

Table 10-13:  Approach Two - Code Condition Estimating Relationships Results  

 
The best regression equation and its statistics follow: 
 

%Actual New SLOC = 0.234 + (0.8189 * %Estimated New SLOC) 
  R2 = 0.74; CV = 0.22; Predict (20) = 45%; Range 16 – 1,246 KSLOC 

 
Although this approach produced an adequate regression for percent actual new SLOC in the 
linear form, the Predict (20) was not as good as in Approach One, and the regression tended to 
overestimate. 
 
10.4.3  RECOMMENDED APPROACH FOR CODE CONDITION 

CHANGE 
 
Table 10-14 displays a summary of the statistics for the four factors along with the statistics for 
the most statistically significant regression equation: 
 

Estimating Methodology CVest  Predict (20)

Mean % 38% 0.37 36.36%
Median % 25% 0.30 45.45%

Mean %Points 13 0.24 54.55%
Median %Points 8 0.25 63.64%

Regression Eqn %Actual New SLOC = 0.234 + (0.82 x %Est New SLOC) 0.22 45.00%  
Table 10-14:  Summary of Statistics for Code Condition Methodology 

 
All four factors resulted in low CVest, however both the mean percentage and the mean 
percentage point factor had disproportionate residuals.  To minimize the potential of 
overestimating a disproportionate amount of the time, NCCA (as stated for the SLOC Growth 
analysis) prefers to maximize Predict (20) (i.e., be closer to the most likely estimate a higher 
percentage of the time) rather than minimize overall error.  (As stated previously, this is in 
contrast to our philosophy of minimizing standard error that was applied in earlier sections of 
this handbook.)  Therefore, because the median percentage point factor had the highest Predict 
(20) of 64 percent and one of the lowest CVs, it is the recommended approach for conducting a 
top-level risk analysis of the initial code condition assumptions.  This approach is applied as 
follows: 

[10-3] 
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• If estimated new SLOC is greater than or equal to 92 percent, assume the program is 100 
percent new SLOC. 

 
• If estimated new SLOC is less than 92 percent, increase the percentage of estimated new 

SLOC by the median percentage point factor of eight percentage points, and reduce the 
percentage of reused SLOC by eight percentage points.  These changes will, by definition, 
translate to an increase in the ESLOC count. 

 
10.5  OVERALL RECOMMENDED APPROACH 
 
NCCA’s preferred approach to conducting a risk analysis of the initial SLOC estimate requires 
the analyst to first determine whether contractor or program specific data is available to develop 
tailored risk analysis relationships.  Only if contractor or program specific data is unavailable, 
should the analyst use these standardized tools to perform the risk analysis.  In general, the 
analyst first increases the estimated total SLOC and then increases the estimated new-to-
reused SLOC ratio.  Specifically, the analyst should use the following process: 
 
Step 1:  Apply the median percent total SLOC growth factor of 22 percent (i.e., as 1.22) to the 
SLOC estimate.  If the SLOC estimate includes reused SLOC, continue to Step 2; otherwise 
skip to Step 4. 
 
Step 2:  If new SLOC is greater than or equal to 92 percent of the total SLOC estimate, 
assume the program is 100 percent new SLOC and skip to Step 4.  If new SLOC is less than 92 
percent, proceed to Step 3. 
 
Step 3:  Increase the estimated percentage of new SLOC by the median percentage point 
factor of eight percentage points, and reduce the percentage of reused SLOC by eight 
percentage points.  This changes the ESLOC count.  (See the next section for two examples.) 
 
Step 4:  Use the output of the steps above as the input to the selected effort estimating 
methodology and generate an estimate of the associated effort. 
 
Step 5:  Estimate the schedule and compute the associated schedule risk by comparing the 
risk adjusted and non-risk adjusted schedule estimates. 
 
Step 6:  Apply the appropriate labor, profit, and G & A rates to the effort estimate. 
 
Step 7:  Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e., 
baseline) cost estimates.  
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Figure 10-1 below depicts this process: 
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Figure 10-2:  Recommended Risk Analysis Process 

 
10.5.1  EXAMPLE ONE 
 
Assumptions for this example are as follows: 
 
Initial SLOC Estimate = 112,450 
Initial Code Condition Estimate = 80% New SLOC and 20% Reused SLOC 
NCCA Efactor66 = 30% 
 
 Equivalent New SLOC (1)67 = New SLOC + (Reused SLOC * Efactor) 
               = (0.8 * Total SLOC) + (0.2 * Total SLOC * Efactor) 
               = (0.8 * 112,450) + (0.2 * 112,450 * 0.3) 
               = 89,960 + 6,747 
               = 96,707 
 
Step 1:  Assuming contractor/program-specific data is unavailable, the analyst should apply the 
NCCA standard default factor of a 22 percent increase to the initial estimate of the total SLOC to 
obtain a revised (i.e., risk) total SLOC count. 
 
 Revised Total SLOC = (0.22 * Initial SLOC Estimate) + Initial SLOC Estimate 
               = (0.22 * 112,450) + 112,450     
               = 137,189 
                                                 
66Code condition will have been provided, and the analyst will have already solved for the Efactor in effort estimation. 
67For example purposes only.  In practice, if the analyst is using NCCA standard or tailored regressions, the ESLOC calculation 
would occur in the effort estimation procedure. 
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This increase in total SLOC count translates to an increase in the ESLOC count as follows: 
 
Revised Equivalent =  New SLOC + (Reused SLOC * Efactor) 
New SLOC  =  (0.8 * Revised Total SLOC) + (0.2 * Revised Total SLOC * 0.3) 
(Code growth only) =  (0.8 * 137,189) + (0.2 * 137,189 * 0.3) 
   =  109,751 + 8,231 
   =  117,982 
 
Step 2:  Determine whether the %new code is greater than 92 percent.  Since it is not (80 
percent) proceed to Step 3. 
 
Step 3:  To obtain the revised new SLOC versus reused SLOC counts, the analyst should 
increase the new SLOC percentage by eight percentage points and decrease the reused SLOC 
percentage by eight percentage points: 
 
Estimated New SLOC with Growth: 

= 0.80 New * Revised Total SLOC 
= 0.80 * 137,189 
= 109,751 

 
 Estimated New SLOC with Growth and code condition adjustment:   
= [.80 (%New) + 0.08 (Code Condition Adj)] * Revised Total SLOC 
= 0.88 * 137,189 
= 120,726 

 
and 
 

 Estimated Reused SLOC with growth:  
= 0.20 (Reused SLOC) * Revised Total SLOC 
= 0.20 * 137,189 
= 27,438 

 
 Estimated Reused SLOC with growth and code condition adj: 

= [0.20 (Reused) + 0.08 (Code Condition Adj)] * Revised Total SLOC 
= 0.12 * 137,189 
= 16,463 

 
or alternatively, 
 
Estimated Reused SLOC with growth and code condition adj: 

= Revised Total SLOC - Est New SLOC with Growth & Code Condition Adj 
= 137,189 - 120,726 
= 16,463 

 
These revised estimates of new SLOC versus reused SLOC translate into a revised ESLOC 
count. 
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Equivalent New SLOC 68 = (Revised New SLOC) + (Revised Reused SLOC * Efactor) 
(Code growth and  = (120,726) + (16,463 * 0.3) 
 code condition)  = 120,726 + 4,939 

  = 125,665 
 
Step 4:  Input the revised ESLOC into the effort estimation process. 
 
Step 5: Estimate the schedule and compute the associated schedule risk by comparing the risk 
adjusted and non-risk adjusted (i.e., baseline) schedule estimates. 
 
Step 6:  Apply the appropriate labor, profit, and G & A rates. 
 
Step 7:  Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e., 
baseline) cost estimates.  
 
In summary, total code growth and code condition risk is 28,958 ESLOC, or the difference 
between 96,707 and 125,665.  This difference represents approximately a 30 percent increase 
in the ESLOC count. 
 
10.5.2  EXAMPLE TWO 
 
Assumptions for this example are as follows: 
 
Initial SLOC Estimate   = 112,450 
Initial Code Condition Estimate  = 94% New SLOC and 6% Reused SLOC 
NCCA Efactor    = 30% 
 
 Equivalent New SLOC  = New SLOC + (Reused SLOC * Efactor) 
        = (0.94 * Total SLOC) + (0.06 * Total SLOC * Efactor) 
        = (0.94 * 112,450) + (0.06 * 112,450 * 0.3) 
        = 105,703 + 2,024 
       = 107,727 
 
Step 1:  Assuming contractor/program specific data is unavailable, the analyst should apply the 
NCCA standard default factor of a 22 percent increase to the initial estimate of the total SLOC to 
obtain a revised (i.e., risk) total SLOC count: 
 
Estimated Total SLOC with Growth: 

= (0.22 * Initial SLOC Estimate) + Initial SLOC Estimate 
= (0.22 * 112,450) + 112,450     
= 137,189 

 
Step 2:  In this case, new SLOC is greater than 92 percent; therefore, new SLOC increases to 
100 percent with no reused SLOC; that is, 137,189 is the total amount of SLOC, and it is all new 
SLOC (i. e., total SLOC equals ESLOC). 

                                                 
68For example purposes only.  In practice, if the analyst is using NCCA standard or tailored regressions, the ESLOC calculation 
would occur in the effort estimation procedure. 
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Step 3:  Skip, since the SLOC are all new. 
 
Step 4:  Input the revised ESLOC (also equal to total SLOC) into the effort estimation process. 
 
Step 5:  Estimate the schedule and compute the associated schedule risk by comparing the 
risk adjusted and non-risk adjusted (i.e., baseline) schedule estimates. 
 
Step 6:  Apply the appropriate labor, profit, and G & A rates. 
 
Step 7:  Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e., 
baseline) cost estimates.   
 
In summary, total code growth and code condition risk is 29,462 ESLOC, or the difference 
between 107,727 and 137,189.  This difference represents approximately a 27 percent increase 
in the ESLOC count. 

 
10.6  FUTURE EFFORTS 
 
Future efforts to improve the SLOC Growth Analysis should consider the following: 
 
1) Expanding the NCCA Normalized SLOC Growth Database to include more program-level 

data points, particularly programs greater than 100 KSLOC.  This should result in a 
database that is more normally distributed than the current database, which would decrease 
the uncertainty of estimating future programs where the size lies outside the current range. 

 
2) Expanding the NCCA Normalized SLOC Growth Database to include MIS data points.  

Since the development of MIS programs is increasing, NCCA needs insight into how and 
why these programs grow.  Additionally, since it is generally agreed that function point 
estimating is more appropriate for MIS programs, differences in growth may be experienced. 

 
3) Researching additional explanatory variables to gain insight into SLOC growth.  This 

analysis failed to uncover the reasons for SLOC code growth (i. e., requirements creep, poor 
estimating, etc.). 

 
4) Identifying the timing of the initial estimates by phase (SDR, SSR, FQT, etc.) for the current 

NCCA Normalized SLOC Growth Database and any new data points to determine when 
SLOC growth occurs.  This would show when growth is most likely to occur, thus facilitating 
the development of appropriate funding profiles. 

 
5) Identifying the impact of schedule on SLOC growth.  This is important because increases or 

decreases in schedule may lead to adjustments in requirements which may then lead to 
corresponding changes in size.



 

 

 

CONCLUSIONS 
 
 
 
Because software development is influenced by so many factors which either are not or can not 
be captured quantitatively, software cost estimating will remain a great challenge. 
 
NCCA has attempted to remove some of the subjectivity involved in software cost estimating by 
developing effort, schedule, labor rate and risk estimating relationships and factors based 
primarily on objective or easily quantifiable parameters.  However, because the regressions and 
factors are top-level and reflect industry averages, the resulting standard errors for effort and 
schedule are typically above 40 percent.  Although the resulting statistics for the regressions 
and factors of the labor rate and risk analyses were much better in comparison, the limited size 
of the underlying databases causes concern. 
 
Many of the effects NCCA tried to measure (such as the effect of embedded versus non-
embedded development) are difficult to isolate.  These analyses were not performed with data 
from an experimental environment in which factors could be controlled.  Therefore, in an attempt 
to control for these factors, the data was filtered into specific subsets.  Clearly, analysts would 
have to start with a huge database to isolate the effect of more than a few specific factors. 
 
Analysts need to pay special attention to the fact that the NCCA standard effort regressions 
represent industry averages.  They represent both old and new processes and tools, well-
behaved and ill-behaved programs, and relatively simple and complex programs.  Therefore, 
these top-level regressions should NOT be the estimating tools of choice.  Instead, contractor-
specific data should be collected for the projects being estimated, where the data represents 
completed projects that are analogous to both the project being estimated and the type of 
process that will be used to develop it.  If, due to lack of data, analysts choose to utilize these 
tools, they should realize and explicitly state the associated variance.  In fact, if possible, the 
statistical range resulting from the tools, in lieu of, or at least in addition to, the point estimate, 
should be provided. 
 
To truly capture the significant software development drivers while decreasing the associated 
variances, the data utilized to develop software development regressions needs to be: 
 

• From the same contractor 
• From the same software development staff 
• For a similar set of requirements 
• From a similar set of tools and processes 
• From a similar mission environment 
• At the same level of complexity 
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Since this would require an extensive number of programs as well as effort and time, the best 
alternative in the interim is to develop the most analogous set of normalized data available. 
 
Collecting more data, sensitive to the list provided above, would lead to better overall top-level 
regressions.  However, it is unlikely that the variances of top-level regressions will ever 
approach the variances of lower-level, domain, mission and contractor-specific regressions.  
Furthermore, in order to ensure the integrity of lower-level regressions, a sufficient quantity of 
data points must be obtained. 
 
In conclusion, the Navy’s ability to estimate software development cost is directly related to the 
quantity and quality of data collected for completed efforts.  Because there are so many 
variables affecting software development productivity, cost, and schedule, a concerted data 
collection effort is required to improve our estimating tools.  By collecting all the data currently 
available to NCCA and creating normalized databases, NCCA has taken the first and most 
critical step in a challenging process of software cost estimating.  The next steps will focus on 
those areas of the database which are deficient, in an attempt to further capture objective, 
significant software productivity drivers and to increase the associated scope to which the tools 
can reasonably be applied.  It is our hope that, at a minimum, the analyst is now aware of those 
variables which should be considered and addressed when gathering data and developing 
software cost estimates. 
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ACRONYM LIST 
 
 
 

498 MIL-STD-498  
2GL Second-Generation Language  
3GL Third-Generation Language 
4GL Fourth-Generation Language  
AAF Adaptation Adjustment Factor  
ACO Administrative Contracting Officer  
ACWP Actual Cost of Work Performed  
AIS  Automated Information System   
ASW Anti-Surface Warfare  
C2 Command and Control  
C3 Command, Control, and Communications  
CCDR Contractor Cost Data Report  
CDR Critical Design Review 
CDRL Contract Data Requirements List  
CED Concept Exploration and Definition  
COCOMO Constructive Cost Model 
COTS Commercial-Off-The-Shelf 
CP Commented Physical 
CPCI Computer Program Configuration Item  
CPR Cost Performance Report 
CSC Computer Software Component  
CSCI Computer Software Configuration Item  
CSU Computer Software Unit 
CV Coefficient of Variation   
DCAA Defense Contracting Audit Agency  
DEM/VAL Demonstration and Validation 
DoD Department of Defense 
DOS Disk Operating System 
DSI Delivered Source Instructions 
DSLOC Delivered Source Lines Of Code 
EAF Effort Adjustment Factor 
Efactor Equivalent Code Conversion Factor 
EMD Engineering and Manufacturing Development 
ESD Electronic Systems Division  
ESLOC Equivalent New Source lines of code  
EW Electronic Warfare 
FPRA Forward Pricing Rate Agreement   
FQT Formal Qualification Test  
FW Firmware 



 

 

G&A General and Administrative 
HOL High Order Language  
ICE Independent Cost Estimate  
IDA Institute for Defense Analyses 
IOC Initial Operational Capability 
IITRI IIT Research Institute 
KSLOC Thousands of Source Lines of Code 
L Logical 
LRE Latest Revised Estimate 
MAD Mean Absolute Deviation 
MCCR Mission Critical Computer Resources 
MCR Management Consulting and Research, Inc. 
MIL-STD Military Standard 
MIS Management Information System  
MM Man-Months 
NCCA Naval Center for Cost Analysis 
OFP Operational Flight Program  
OTE Operational Test and Evaluation  
P Physical 
PDL Program Design Language 
PDR Preliminary Design Review 
PDRR Program Definition and Risk Reduction  
RC %Re-Code 
RD %Re-Design 
REVIC  Revised Intermediate COCOMO 
RFP Request for Proposal 
RT %Re-Test 
SASET Software Architecture Sizing & Estimating Tool  
SDP Software Development Plan  
SDR System Design Review 
SEE Standard Error of the Estimate 
SEL Software Engineering Laboratory  
SIT System Integration and Test  
SLOC Source Lines of Code  
SMC Space and Missile Center  
SRS Software Requirements Specification   
SSCAG Space Systems Cost Analysis Group  
SSR Software Specification Review  
STP Software Test Plan  
WBS Work Breakdown Structure  

 
 

 
 


